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Abstract

In many epistemic applications of topology, open sets are in-
terpreted as hypotheses deductively verifiable by true propo-
sitional information that rules out relevant possibilities.
However, in statistical data analysis, one routinely receives
random samples logically compatible with every statistical
hypothesis. We bridge the gap between propositional and
statistical data by solving for the unique topology on proba-
bility measures in which the open sets are exactly the statis-
tically verifiable hypotheses. Furthermore, we extend that
result to a topological characterization of learnability in the
limit from statistical data. These results extend topological
models of inquiry that have emerged in diverse fields such
as domain theory [Abramsky and Jung, 1994, Vickers, 1996],
formal learning theory [Yamamoto and de Brecht, 2010], epis-
temology and philosophy of science [Kelly, 1996, Schulte and
Juhl, 1996, Genin and Kelly, 2015, forthcoming, Baltag et al.,
2015], statistics [Dembo and Peres, 1994, Ermakov, 2013] and
modal logic [Wáng and Ågotnes, 2013, Bjorndahl, 2013].
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In both the statistical and propositional settings, the Borel hier-
archy captures the structure of methodological possibility. In the
propositional setting, �0

1 hypotheses are the open sets generated
by the information basis. In the statistical setting, �0

1 hypotheses
are the open sets of the weak topology. The �0

2 hypotheses are
all the hypotheses H that can be expressed in the form

H = fiiœN Ui fl V c

i ,

where Ui, Vi œ �0
1. The �0

n hypotheses are complements of �0
n

hypotheses. Finally, �0
n = �0

n fl �0
n. The diagram shows the

inclusions between levels of the Borel hierarchy.

Propositional Setting

W is a set of possible worlds, and Iw is the set of all information
states true in w. Information states logically refute incompatible
possibilities. We assume that:
1 For every w, Iw is non-empty;
2 The set of all information states I = fiwIw is countable;
3 for every E, F in Iw, there is G in Iw such that G ™ E fl F .
The underlying idea is that a su�ciently diligent inquirer in w
eventually receives information as strong as an arbitrary infor-
mation state E in Iw. Since that is true of both E and F , there
must be true information as strong as E fl F .

It follows from assumptions (1) and (3) that I is a topological
basis. Therefore, the closure of I under union, denoted T , is a
topological space we call the information topology.

Statistical Setting

W is a set of Borel measures on a sample space S, equipped with
a topology. The topology on S reflects what is verifiable about
the sample itself. As in the propositional setting, it is verifiable
that sample Ê lands in A i� A is open, and it is decidable whether
sample Ê falls into region A i� A is clopen. Suppose that A is
the closed interval [1/2, Œ], and the sample Ê lands right on
the end-point 1/2 of A. Given enough time and computational
power, the sample Ê can be specified to arbitrary, finite precision.
But no finite degree of precision: Ê ¥ .50; Ê ¥ .500; Ê ¥ .5000;
. . . su�ces to determine that Ê is truly in A. But the mere
possibility of a sample hitting the boundary of A does not matter
statistically, if the chance of such a sample is zero. A Borel set
A ™ S for which pw(bdry(A)) = 0 for every world in W is said
to be almost surely decidable. We assume that the topology on
S has a basis of almost surely decidable regions.

Logical Verifiability

A method is a function from information states to propositions.
Method L(·) is infallible i� its output is always true, i.e. i�
w œ L(E) for all E œ Iw. A verifier for H is an infallible
method that converges to belief in H i� H is true. That is, L(·)
is a verifier for H i�
1 L(·) is infallible and
2 w œ H i� there is E œ Iw such that L(F ) ™ H for all

F œ Iw entailing E.
H is verifiable i� there exists a verifier for H . H is refutable
i� its complement is verifiable. H is decidable i� H is both
verifiable and refutable.

Theorem. Hypothesis H is verifiable i� H is open in the in-
formation topology.

Statistical Verifiability

A family {⁄n}nœN of feasible tests of Hc ™ W is an almost sure
–-verifier of H i�

1 �Œ
n=1 pn

w[⁄≠1
n (H)] Æ – for all w œ Hc and

2 pŒ
w

S

Ulim inf
næŒ ⁄≠1

n (H)
T

V = 1 for all w œ H .

Hypothesis H ™ W is almost surely –-verifiable i� there is an
almost sure –-verifer of H . H is almost surely verifiable i� H is
almost surely –-verifiable, for every – > 0. H is almost surely
refutable i� Hc is almost surely verifiable. H is almost surely
decidable i� H is almost surely verifiable and refutable.

Theorem. Hypothesis H is almost surely verifiable i� H is
open in the weak topology.

Logical Verifiability in the Limit

A limiting verifier for H is a method that converges to true
belief in H i� H is true. That is, L(·) is a limiting verifier for
H ™ W i�
1 w œ H i� there is E œ Iw such that L(F ) ™ L(E) ™ H for

all F œ Iw entailing E.
H is limiting verifiable i� there exists a limiting verifier of H .
H is limiting refutable i� there exists a limiting verifier of Hc.
H is limiting decidable i� it is limiting verifiable and refutable.

Theorem. Hypothesis H is limiting verifiable i� H is �0
2 in the

information topology.

Statistical Verifiability in the Limit

A family {⁄n}nœN of feasible methods is a limiting almost sure
verifier of H ™ W i�
1 w œ H i� there is H Õ ™ H, s.t. pŒ

w [lim inf
næŒ ⁄≠1

n (H Õ)] = 1;
2 w /œ H i� for all H Õ ™ H, pŒ

w [lim sup
næŒ

⁄≠1
n (H Õ)] = 0.

H is limiting a.s. verifiable i� there is a limiting a.s. verifier of
H . H is limiting a.s. refutable i� Hc is limiting a.s. refutable.
H is limiting a.s. decidable i� Hc is limiting a.s. verifiable and
refutable.

Theorem. Hypothesis H is limiting almost surely verifiable i�
H is �0

2 in the weak topology.

Feasible Methods

A statistical method is a measurable function from samples to
propositions over W . A test of a statistical hypothesis H ™
W is a statistical method Â : � æ {W, Hc}. Call Â≠1(W )
the acceptance region, and Â≠1(Hc) the rejection region of the
test. The power of test Â(·) is the worst-case probability that
it rejects truly, i.e. infwœHc pw[Â≠1(Hc)]. The significance level
of a test is the worst-case probability that it rejects falsely, i.e.
supwœH pw[Â≠1(Hc)]. A method is feasible in µ i� the preimage
of every element of its range is almost surely decidable in µ. A
method is feasible i� it is feasible in every world in W . Methods
that are not feasible are impossible to implement.

Weak Topology

A sequence of measures (wn)n converges weakly to w, written
wn ∆ w, i� pwn

(A) æ pw(A) for every A almost surely clopen in
w. It is immediate that wn ∆ w i� for every w-feasible test Â(·),
pwn

(Â rejects) æ pw(Â rejects). It follows that no feasible test
of H = {w} achieves power strictly greater than its significance
level. Furthermore, every feasible method that correctly infers
H with high chance in w, exposes itself to a high chance of error
in “nearby” wn.
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