

What is Statistical Deduction?

{Kevin T. Kelly, Konstantin Genin} Carnegie Mellon University

June 2017

INDUCTIVE VS. DEDUCTIVE INFERENCE

Taxonomy of Inference

All the objects of human ... enquiry may naturally be divided into **two kinds**, to wit,

- 1. Relations of Ideas, and
- 2. Matters of Fact.

David Hume, *Enquiry*, Section IV, Part 1.

Taxonomy of Inference

- Any ... inference in science belongs to one of two kinds:
 - either it yields certainty in the sense that the conclusion is necessarily true, provided that the premises are true,
 - 2. or it does not.
- The first kind is ... deductive inference
- The second kind will ... be called 'inductive inference'.
- R. Carnap, The Continuum of Inductive Methods, 1952, p. 3.

Taxonomy of Inference

- Explanatory arguments which ... account for a phenomenon by reference to statistical laws are not of the strictly deductive type.
- An account of this type will be called an ... inductive explanation.
- C. Hempel, "Aspects of Scientific Explanation", 1965, p. 302.

Deductive Inference

Truth Preserving

- In each possible world:
 - if the premises are true,
 - then the conclusion is true.

Monotonic

• Conclusions are stable in light of further premises.

monotonic.

Logical Taxonomy of Inference

deductive

- Calculation
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

inductive

- Inferring universal H
- Choosing between universal H₀, H₁, H₂, ...

Real Data

- All real measurements are subject to probable error.
 - It can be reduced by averaging repeated samples.

Real Predictions

- All real predictions are subject to probable error.
 - It can be reduced by predicting averages of repeated samples.

Real Calculations

- Even all real calculations are subject to probable error.
 - It can be reduced by comparing repeated calculations.

Real Deductive Inference

Truth preserving in chance

- In each possible world:
 - if the premises are true,
 - then the chance of drawing an erroneous conclusion is low.

Monotonic in chance

• The chance of producing a conclusion is guaranteed not to drop by much.

Traditional Taxonomy of Inference inference inductive everything else logically statistically deductive deductive

Missed Opportunities for Philosophy

inference

logically deductive

- 1. Ideal calculation
- 2. Refuting universal H_0
- 3. Verifying existential H_1 -----
- Deciding between universal -- H₀, H₁
- 5. Predicting *E* from *H*
- 6. Hypotheses compatible with *E*

statistically deductive

- 1. Real calculation
- 2. Refuting point null H_0
- 3. Verifying composite H_1
- 4. Deciding between point hypotheses H_0 , H_1
- 5. Direct inference of E from H
- 6. Non-rejection.

everything else

inductive

- 1. Inferring universal H_0
- 2. Choosing between universal H_0 , H_1 , H_1 , ...
- 1. Inferring simple H_0
- 2. Model selection

Main Objection

• In logical deduction, the evidence definitely rules out possibilities.

E	Н

Main Objection

- In logical deduction, the evidence logically rules out possibilities.
- In statistical deduction, the sample is logically compatible with every possibility.

Main Objection

- In logical deduction, the evidence logically rules out possibilities.
- In statistical deduction, the sample is logically compatible with every possibility.
- The situations are not even similar.

THE LOGICAL SETTING

Possible Worlds

Propositional Information State

The logically strongest proposition you are informed of.

The Situation We are Modeling

In world w, a diligent inquirer eventually obtains true information F that deductively entails arbitrary information state E true in w.

Three Axioms

1. **Some** information state true in *w*.

Three Axioms

- 1. Some information state true in *w*.
- 2. Each pair of information states true in *w* is entailed by a true information state true in *w*.

Three Axioms

- 1. Some information state true in *w*.
- 2. Each pair of information states true in *w* is entailed by a true information state true in *w*.
- 3. There are at most countably many information states.

Information States

 $\mathcal{I} =$ the set of all information states.

Information States

 $\mathcal{I} =$ the set of all information states. $\mathcal{I}(w) =$ the set of all information states true in w.

The **Topology** of Information

- \mathcal{I} is a **topological basis** on W.
- Closing *I* under infinite disjunction yields a topologial space on *W*.

The **Topology** of Information

- \mathcal{I} is a **topological basis** on W.
- Closing *I* under infinite disjunction yields a topological space on *W*.

Topological structure isn't imposed; it is already there.

Example: Measurement of X

- Worlds = real numbers.
- Information states = open intervals.

Example: Joint Measurement

- Worlds = points in real plane.
- Information states = open rectangles.

Example: Equations

• Worlds = functions $f : \mathbb{R} \to \mathbb{R}$.

Example: Laws

• An **observation** is a joint measurement.

Example: Laws

• The **information state** is the set of all worlds that touch each observation.

Example: Sequential Binary Experiment

World = infinite discrete sequence of outcomes.
Information state = all extensions of a finite outcome
sequence:

The Sleeping Scientist

• The theorist is **awakened** by her graduate students only when her theory is refuted.

Deductive Verification and Refutation

H is **verified** by *E* iff $E \subseteq H$.

Deductive Verification and Refutation

H is verified by *E* iff $E \subseteq H$. *H* is refuted by *E* iff $E \subseteq H^c$.

Deductive Verification and Refutation

H is verified by *E* iff $E \subseteq H$. *H* is refuted by *E* iff $E \subseteq H^c$.

H is **decided** by *E* iff *H* is either verified or refuted by *E*.

H Will be Verified in *w*

w is an **interior point** of H iff

iff there is $E \in \mathcal{I}(w)$ s.t. *H* is verified by *E*.

H Will be Refuted in w

w is an **interior point** of H iff

iff *H* will be verified in *w*

iff there is $E \subseteq \mathcal{I}(w)$ s.t. *H* is verified by *E*.

w is an **exterior point** of H iff w is an interior point of H^c .

Popper's Problem of Metaphysics in w

w is a **frontier point** of H iff

• *H* is false in *w* but will never be refuted in *w*.

Hume's Problem of Induction in w

w is a **frontier point** of H^c iff

• *H* is true in *w* but will never be verified in *w*.

Topological Operations as Modal Operators

- **int** *H* := the proposition that *H* **will be verified.**
- **ext** *H* := the proposition that *H* **will be refuted.**
- **frnt** *H* := the proposition that *H* is **false** but **will never be refuted**.
- frnt H^c := the proposition that H is true but will never be verified.

Verifiability, Refutability, Decidability

H is **open (verifiable)** iff $H \subseteq int(H)$.

i.e., iff *H* will be verified however *H* is true.

H is **closed (refutable)** iff H^c is open.

H is **clopen (decidable)** iff H is both open and closed.

Propositional Methods

• **Propositional methods** produce propositional conclusions in response to propositional information.

- A verification method for *H* is an method *M* such that in every world *w*:
 - 1. $w \in H$: *M* converges infallibly to *H*;
 - 2. $w \in H^c$: V always concludes W.

• A verification method for *H* is an method *M* such that in every world *w*:

1. $w \in H$: *M* converges to *H* and never concludes H^c ;

2. $w \in H^c$: V always concludes W.

• A **refutation method** for *H* is just a verification method for *H*^c.

• A verification method for *H* is an method *M* such that in every world *w*:

1. $w \in H$: *M* converges to *H* and never concludes H^c ;

2. $w \in H^c$: V always concludes W.

- A refutation method for H is just a verification method for H^{c} .
- A decision method for *H* converges to *H* or to *H*^c without error.

Proposition.

If *M* is a verifier, refuter, or decider for *H*,

then M produces only conclusions that are deductively entailed by the given information.

The Topology of Deductive Success

Proposition. H has a verifier, refuter, or decider iff H is open, closed, or clopen.

• A **limiting verification method** for *H* is a method *M* such that in every world *w*:

 $w \in H$ iff *M* converges to some true *H'* that entails *H*.

• A limiting verification method for *H* is a method *M* such that in every world *w*:

 $w \in H$ iff *M* converges to some true *H'* that entails *H*.

• A **limiting refutation method** for *H* is a limiting verification method for *H*^c.

• A limiting verification method for *H* is a method *M* such that in every world *w*:

 $w \in H$ iff *M* converges to some true *H'* that entails *H*.

- A limiting refutation method for *H* is a limiting verification method for *H^c*.
- A **limiting decision method** for *H* is a limiting verification method and a limiting refutation for *H*.

Proposition. No limiting verifier of "never awakened" is deductive.

Scientific Models

H is locally closed iff H can be expressed as a difference of open (verifiable) propositions.Thesis: Scientific models are locally closed propositions.

Topology

Let \mathcal{I}^* denote the closure of \mathcal{I} under union.

Proposition:

If (W, \mathcal{T}) is an information basis then (W, \mathcal{T}^*) is a topological space.

Topology

- *H* is **open** iff $H \in \mathcal{I}^*$.
- H is **closed** iff H^c is open.
- *H* is **clopen** iff *H* is both **closed** and **open**.
- *H* is **locally closed** iff *H* is a difference of open sets.

Sleeping Theorist Example

- H_2 = "Awakened twice" is open.
- H_1 = "Awakened once" is locally closed.
- H_0 = "Never awakened" is closed.

Sequential Example

 H_2 = "You will see 1 exactly twice" is open. H_1 = "You will see 1 exactly once" is locally closed. H_0 = "You will never see 1" is closed.

Equation Example

- H_2 = "quadratic" is open.
- H_1 = "linear" is locally closed.
- H_0 = "constant" is closed.

Scientific Theories and Paradigms

H is **limiting open** iff *H* can be expressed as a countable union of locally closed propositions.

Theses:

- 1. Scientific theories are limiting open.
- 2. Each locally closed disjunct of a theory is a possible **articulation** of the theory.
- **3. Duhem's problem:** a theory in trouble can always be re-articulated to accommodate the data.

Equation Example

- H_0 = the true law is polynomial.
- H_1 = the true law is a trigonometric polynomial.

Topology

- *H* is **limiting open** iff *H* is a countable union of locally closed sets.
- H is **limiting closed** iff H^c is limiting open.
- *H* is **limiting clopen** iff *H* is both limiting open and limiting closed.

Theorem.

Theorem

THE STATISTICAL SETTING

Can We Do the Same for Statistics?

Kelly's topological approach...

"may be okay if the candidate theories are **deductively** related to observations, but when the relationship is **probabilistic**, I am **skeptical** ...".

Eliott Sober, Ockham's Razors, 2015

Statistics

• Worlds are probability measures over \mathcal{T} .

Statistical Verification

- A statistical verification method for *H* at significance level $\alpha > 0$:
 - 1. converges in probability to conclusion *H*, if *H* is true.
 - 2. always concludes W with probability at least 1- α , if H is false.
- *H* is statistically verifiable iff *H* has a statistical verification method at each *α* > 0.

Methods

- A statistical verification method for H at level α > 0 is a sequence (M_n) of feasible tests of H^c such that for every world w and sample size n:
 - 1. if $w \in H$: M_n converges in probability to H;
 - 2. If $w \in H^c$: M_n concludes W with probability at least $1 \alpha_n$,

for $\alpha_n \rightarrow 0$, and dominated by α .
Statistical Verifiction in the Limit

- A limiting statistical α -verification method for H
 - 1. produces only conclusions H or W
 - 2. converges in probability to H iff H is true.
- *H* is **statistically verifiable in the limit** iff *H* has a limiting statistical α -verification method, for each $\alpha > 0$.

Recall the Fundamental Difficulty

- Every sample is logically consistent with all worlds!
- So it seems that statistical information states are all trivial!

The Main Result

- Under mild and natural assumptions...
- there exists a unique and familiar topology on probability measures for which...

The Main Result

So in Both Logic and Statistics:

From Logic to Statistics

- Start with purely (topo)logical insights about scientific methodology.
- Transfer them to statistics via the preceding result.

The Key Idea

• Even with arbitrarily powerful magnification, it is infeasible to verify that a given cube is **exactly** 2 inches wide.

The Key Idea

- Similarly, it is awkward to say that a given attempt at measuring length yields **exactly** a given value.
- More decimal places of expansion might violate exact identity at any stage of approximation:

The Key Idea

- So if there were a non-zero chance of a sample hitting **exactly** on the boundary of the acceptance zone of a statistical test...
- one would have a non-zero chance of implementing the test incorrectly.
- I.e., the test would be infeasible.
- A sample event is **almost surely decidable** in *W* iff every possible probability measure in *W* assigns its boundary chance 0.

Almost Surely Decidable Sample Events

• A sample event is **almost surely decidable** in *W* iff there is zero chance that a sampled measurement hits exactly on its boundary.

The Weak and Natural Assumptions

- 1. Entertain only **feasible methods** whose acceptance zones for various hypotheses are almost surely decidable.
- 2. The sample space has a **countable basis of almost surely decidable regions**.
 - True for discrete random variables.
 - True for continuous random variables.
- 3. Sampling is IID.

Epistemology of the Sample

- The sample space S always comes with its own topology \mathcal{T}
- \mathcal{T} reflects what is verifiable about the sample itself.

s definitely falls within open interval Z.

Feasible Sample Events

- It's impossible to decide whether a sample that lands right on the boundary of sample zone Z is really in or out of Z.
- Z is feasible iff the chance of its boundary is zero in every world, i.e. Z is *almost surely* decidable.

Feasible Method

A feasible method *M* is a statistical method whose acceptance zones for various conclusions are all feasible.

Feasible Tests

A feasible test of *H* is a feasible method that outputs *H*^c or *W*.

The Weak Topology

 $w \in \operatorname{cl} H$ iff there exists sequence (w_n) in H, such that for all feasible tests M:

$$\lim_{n \to \infty} p_{w_n}(M \text{ rejects}) \to p_w(M \text{ rejects}).$$

Weak Topology

Proposition: If \mathcal{T} has a countable basis of feasible regions, then:

statistical information topology = weak topology.

Weak Topology

Proposition: If \mathcal{T} is second-countable and metrizable, then the weak topology is second-countable and metrizable e.g., by the Prokhorov metric.

Methods

- A statistical verification method for H at level α > 0 is a sequence (M_n) of feasible tests of H^c such that for every world w and sample size n:
 - 1. if $w \in H$: M_n converges in probability to H;
 - 2. If $w \in H^c$: M_n concludes W with probability at least $1 \alpha_n$,

for $\alpha_n \rightarrow 0$, and dominated by α .

Monotonicity

Conjecture: For any open H and $\alpha > 0$, there exists (M_n) a verification method at level α such that if $w \in H$:

1. if
$$w \in H$$
: $p_w^{n_2}(M_{n_2} = H) + \alpha > p_w^{n_1}(M_{n_1} = H)$,
2. if $w \in H^c$: $p_w^{n_2}(M_{n_2} = W) > p_w^{n_1}(M_{n_1} = W)$,
for all $n_2 > n_1$.

Topological Simplicity

It still makes sense in terms of statistical information topology!

$A \triangleleft B \Leftrightarrow A \cap \mathsf{cl}(B) \setminus B \neq \emptyset.$ $H_1 \triangleleft H_2 \triangleleft H_3.$

Ockham's Statistical Razor

Concern: "compatibility with E" is no longer meaningful.

Response: the third formulation of O.R. does not mention compatibility with experience!

APPLICATION: OCKHAM'S STATISTICAL RAZOR (UNDER CONSTRUCTION)

Ockham's α -Razor

Statistical version of the error-razor:

A statistical method is α -Ockham iff the chance that it outputs an answer more complex than the true answer is bounded by α .

Agrees with significance for simple vs. complex binary questions!

Epistemic Mandate for Ockham's Razor

If you **violate Ockham's razor** with chance α , then

- 1. either you fail to converge to the truth in chance or
- 2. nature can force you into an α -cycle of opinions (complex-simple-complex), even though such cycles are avoidable.

O-Cycle Solution, Uniform Case

- Worlds: uniform distributions with unit square support
- Question: which mean components are non-zero?
- Method: output the simplest answer such that no sample point falls outside of its zone.

Progressive Methods

- Say that a solution is progressive iff the objective chance that it outputs the true answer is an increasing function of sample size.
- Say that a solution is α -progressive iff the chance that it outputs the true answer never decreases by more than α .

Result

Proposition: If there is an enumeration of the answers A₁, A₂, A₃, ... agreeing with the simplicity order, then there is an α-progressive solution for every α.

(Whenever α -monotonic verifiers exist for **ext** A_i)

Result

• **Proposition:** Every α -progressive solution is α -Ockham.

A New Objective Bayesianism

How much **prior bias toward simple models** is necessary to avoid α -cycles?

X Indifference = ignorance.

truth-conduciveness.

CONCLUSION

A Method for Methodology

- 1. Develop basic methodological ideas in topology.
- 2. Port them to statistics via statistical information topology.

Some Concluding Remarks

- **1. Information topology** is the structure of the scientist's problem context.
- 2. The apparent **analogy** between statistical and ideal methodology reflects **shared topological structure**.
- 3. Thereby, ideal logical/topological ideas can be ported directly to statistics.
- 4. The result is a new, systematic, **frequentist** foundation for **inductive inference** and **Ockham's razor**.

Application: Causal Inference from Non-experimental Data

- Causal network inference from retrospective data.
- That is an **inductive** problem.
- The search is strongly guided by **Ockham's razor**.
- We have the only non-Bayesian foundation for it.

Symbols: "A" = cause (YFV); "B" = outcome (cancer); "C" = confounders (recreational solar exposure and high social class); "D" and "E" = mediators (HERV-K antigen and immune response).

Application: Science

- All scientific conclusions are supposed to be counterfactual.
- Scientific inference is strongly simplicity biased.
- Standard ML accounts of Ockham's razor do not apply to such inferences (J. Pearl).
- Our account does.

OCKHAM'S TOPOLOGICAL RAZOR

Popper Was Doing Topology

Popper's simplicity relation:

 $A \preceq B \iff A \subseteq \mathsf{cl}B.$

 $H_1 \preceq H_2 \preceq H_3.$

An Improvement

$A \lhd B \iff A \cap \mathsf{cl}(B) \setminus B \neq \emptyset.$

$H_1 \triangleleft H_2 \triangleleft H_3.$

Topological Simplicity

- 1. Motivated by the problem of induction.
- 2. Depends only on the structure of possible information.
- 3. Independent of notation.
- 4. Independent of parameterization.
- 5. Independent of prior probabilities.
- 6. Non-trivial in O-dimensional spaces.

Ockham's Razor

- A question partitions W into possible answers.
- A relevant response is a disjunction of answers.
- A **solution** is a method that converges to the true answer in every world in *W*.

Proposition. The following principles are **equivalent**.

- 1. Infer a **simplest** relevant response in light of *E*.
- 2. Infer a **refutable** relevant response compatible with *E*.
- 3. Infer a relevant response that is **not more complex than the true answer**.

Epistemic Mandate for Ockham's Razor

If you violate Ockham's razor then

- 1. either you fail to converge to the truth or
- 2. nature can force you into an avoidable cycle of opinions.

Does Not Presuppose Simplicity

Indeed, by **favoring** a **complex** hypothesis, you incur the avoidable cycle in a **complex** world!

Result

Proposition: Every cycle-free solution satisfies
Ockham's razor.

Result

 Proposition (Baltag, Gierasimczuk, and Smets): Every solvable question is refinable to a locally closed question with a cycle-free solution.

