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INDUCTIVE	VS.	DEDUCTIVE	
INFERENCE	



Taxonomy	of	Inference	

All	the	objects	of	human	...	enquiry	may	naturally	
be	divided	into	two	kinds,	to	wit,		

1.   Rela:ons	of	Ideas,	and		
2.   Ma>ers	of	Fact.		

	David	Hume,	Enquiry,	Sec)on	IV,	Part	1.	

	
	



Taxonomy	of	Inference	

•  Any	...	inference	in	science	belongs	to	one	of	two	
kinds:		
1.  either	it	yields	certainty	in	the	sense	that	the	

conclusion	is	necessarily	true,	provided	that	the	
premises	are	true,		

2.  or	it	does	not.		
•  The	first	kind	is	...	deduc:ve	inference	....	
•  The	second	kind	will	...	be	called	'induc:ve	inference'.		
•  R.	Carnap,	The	Con.nuum	of	Induc.ve	Methods,	1952,	p.	3	.	

	



Taxonomy	of	Inference	

•  Explanatory	arguments	which	...	account	for	a	
phenomenon	by	reference	to	sta:s:cal	laws	are	not	of	
the	strictly	deduc:ve	type.	

•  An	account	of	this	type	will	be	called	an	...	induc:ve	
explana)on.	

•  C.	Hempel,	“Aspects	of	Scien)fic	Explana)on”,	1965,	p.	302.	

	



Deduc)ve	Inference	

Truth	Preserving	
•  In	each	possible	world:		
–  if	the	premises	are	true,		
–  then	the	conclusion	is	true.	

Monotonic	
•  Conclusions	are	stable	in	light	of	further	premises.	

	
	



Logical	Taxonomy	of	Inference	
inference	

deduc)ve	 induc)ve	
truth	preserving,	
monotonic.	

Everything	else	



Logical	Taxonomy	of	Inference	
inference	

deduc)ve	 induc)ve	
•  Calcula)on	
•  Refu)ng	universal	H	
•  Verifying	existen)al	H	
•  Deciding	between	universal	H,	H’	
•  Predic)ng	E	from	H	
•  Hypotheses	compa)ble	with	E	

	

•  Inferring	universal	H	
•  Choosing	between	

universal	H0	,	H1	,	H2	,	...	



Real	Data	

•  All	real	measurements	are	subject	to	probable	
error.	
–  It	can	be	reduced	by	averaging	repeated	samples.	



Real	Predic)ons	

•  All	real	predic)ons	are	subject	to	probable	
error.		
•  It	can	be	reduced	by	predic)ng	averages	of	
repeated	samples.	

	



Real	Calcula)ons	

•  Even	all	real	calcula)ons	are	subject	to	
probable	error.	
–  It	can	be	reduced	by	comparing	repeated	
calcula)ons.	



Real	Deduc)ve	Inference	

Truth	preserving	in	chance	
•  In	each	possible	world:		
–  if	the	premises	are	true,		
–  then	the	chance	of	drawing	an	erroneous	
conclusion	is	low.	

Monotonic	in	chance	
•  The	chance	of	producing	a	conclusion	is	guaranteed	
not	to	drop	by	much.	
	
	



Taxonomies	Can	be	Bad	

white	roses	

everything	else	

non-white	roses	 everything	else	

things	



Tradi)onal	Taxonomy	of	Inference	

logically	
deduc)ve	

induc)ve	

everything	else	

inference	

sta)s)cally	
deduc)ve	



Missed	Opportuni)es	for	Philosophy	

induc)ve	

1.  Ideal	calcula)on	
2.  Refu)ng	universal	H0	
3.  Verifying	existen)al	H1	
4.  Deciding	between	universal	

H0	,	H1	
5.  Predic)ng	E	from	H	
6.  Hypotheses	compa)ble	with	E	

	

1.  Real	calcula)on	
2.  Refu)ng	point	null	H0	
3.  Verifying	composite	H1	
4.  Deciding	between	point	

hypotheses	H0	,	H1	
5.  Direct	inference	of	E	from	H	
6.  Non-rejec)on.	

	

1.  Inferring	universal	H0	
2.  Choosing	between	

universal	H0	,	H1,	H1	,	...	
	
1.  Inferring	simple	H0	

2.  Model	selec)on	

inference	

everything	else	logically	
deduc)ve	

sta)s)cally	
deduc)ve	



Beder	Taxonomy	of	Inference	

1.  Refu)ng	universal	H0	
2.  Verifying	existen)al	H1	
3.  Deciding	between	

universal	H0	,	H1	
4.  Predic)ng	E	from	H	
5.  Compa)bility	with	E	
6.  Ideal	calcula)on	

	

1.  Refu)ng	point	null	H0	
2.  Verifying	composite	H1	
3.  Deciding	between	point	

hypotheses	H0	,	H1	
4.  Direct	inference	of	E	from	H	
5.  Non-rejec)on.	
6.  Real	calcula)on	

	

1.  Inferring	universal	H0	
2.  Choosing	between	

universal	H0	,	H1,	
H1	,	...	

	

1.  Inferring	simple	H0	

2.  Model	selec)on	

sta)s)cally	logically	 sta)s)cally	logically	

inference	

deduc)ve	 induc)ve	



Main	Objec)on	

•  In	logical	deduc)on,	the	evidence	definitely	rules	out	
possibili)es.	
	

H 
E 



Main	Objec)on	

•  In	logical	deduc)on,	the	evidence	logically	rules	out	
possibili)es.	

•  In	sta)s)cal	deduc)on,	the	sample	is	logically	
compa)ble	with	every	possibility.			

	

	
H 

E 

H 

E 



Main	Objec)on	

•  In	logical	deduc)on,	the	evidence	logically	rules	out	
possibili)es.	

•  In	sta)s)cal	deduc)on,	the	sample	is	logically	
compa)ble	with	every	possibility.			

•  The	situa)ons	are	not	even	similar.	

	 H 
E 

H 

E 



THE	LOGICAL	SETTING	



Possible	Worlds	

		

W

w



Proposi)onal	Informa)on	State	

The	logically	strongest	proposi)on	you	are	
informed	of.	

W

E	



The	Situa)on	We	are	Modeling	

In	world	w,	a	diligent	inquirer	eventually	obtains	
true	informa)on	F	that	deduc)vely	entails	
arbitrary	informa)on	state	E	true	in	w.			

W

wE	 F	



Three	Axioms	

1.  Some	informa)on	state	true	in	w.	
	

W

w



Three	Axioms	

1.  Some	informa)on	state	true	in	w.	
2.  Each	pair	of	informa)on	states	true	in	w	is	entailed	by	

a	true	informa)on	state	true	in	w.	

W

w



Three	Axioms	

1.  Some	informa)on	state	true	in	w.	
2.  Each	pair	of	informa)on	states	true	in	w	is	entailed	by	

a	true	informa)on	state	true	in	w.	
3.  There	are	at	most	countably	many	informa)on	states.	



Informa)on	States 

		 I = the set of all information states.

W



Informa)on	States 

		

W

w

I(w) = the set of all information states true in w.
I = the set of all information states.



The	Topology	of	Informa)on 

•  				is	a	topological	basis	on	W.	
•  Closing					under	infinite	disjunc)on	yields	a	topologial	
space	on	W.	

WW

w

I
I



The	Topology	of	Informa)on 

•  				is	a	topological	basis	on	W.	
•  Closing					under	infinite	disjunc)on	yields	a	topological	
space	on	W.	

Topological	structure	isn’t	imposed;		it	is	already	there.	

WW

w

I
I



Example:		Measurement	of	X 

•  Worlds	=	real	numbers.	
•  Informa:on	states	=	open	intervals.	

(						)	

X 0	



Example:		Joint	Measurement	

•  Worlds	=	points	in	real	plane.	
•  Informa:on	states	=	open	rectangles.	

(0,	0)	

(		)	

(						)	

X	

Y	



Example:		Equa)ons	

•  Worlds	=	func)ons		
	

f : R ! R.

f



Example:		Laws	

•  An	observa:on	is	a	joint	measurement.	
	

f
(x,	x’)	

(y
,	y
’)	



Example:		Laws	

•  The	informa:on	state	is	the	set	of	all	worlds	
that	touch	each	observa)on.	

	



World	=	infinite	discrete	sequence	of	outcomes.	
Informa:on	state	=	all	extensions	of	a	finite	outcome	
sequence:	

	

Example:		Sequen)al	Binary	Experiment	

.	.	.	

.	.	.	

observed	so	far	

possible	extensions	



The	Sleeping	Scien)st	

•  The	theorist	is	awakened	by	her	graduate	
students	only	when	her	theory	is	refuted.	



Deduc)ve	Verifica)on	and	Refuta)on	

H	is	verified	by	E			iff		E	⊆	H.	

	

w

H Hc 



Deduc)ve	Verifica)on	and	Refuta)on	

H	is	verified	by	E			iff		E	⊆	H.	
H	is	refuted	by	E			iff		E	⊆	Hc.	

w

H Hc 



Deduc)ve	Verifica)on	and	Refuta)on	

H	is	verified	by	E			iff		E	⊆	H.	
H	is	refuted	by	E			iff		E	⊆	Hc.	
H	is	decided	by	E			iff		H	is	either	verified	or	refuted	by	E.	
	

w

H Hc 



H	Will	be	Verified	in	w	
w	is	an	interior	point	of	H	iff		

	iff	there	is	E	∈	I(w)	s.t.	H	is	verified	by	E.	

w

H Hc 

E w 



H Will	be	Refuted	in	w 
w	is	an	interior	point	of	H	iff		

	iff	H	will	be	verified	in	w		
	iff	there	is	E	∈	I(w)	s.t.	H	is	verified	by	E.	

w	is	an	exterior	point	of	H	iff	w	is	an	interior	point	of	Hc.	
	

w

H Hc 

E w 



Popper’s	Problem	of	Metaphysics	in	w	

w	is	a	fron:er	point	of	H	iff		
•  H is	false	in	w	but	will	never	be	refutedin	w.	
	

w

H Hc 

E w 



Hume’s	Problem	of	Induc)on	in	w	
w	is	a	fron:er	point	of	Hc	iff		
•  H is	true	in	w	but	will	never	be	verified	in	w.	
	

w

H Hc 

E w 



Topological	Opera)ons	as		
Modal	Operators	

int	H					:=			the	proposi)on	that	H	will	be	verified.	
ext	H				:=			the	proposi)on	that	H	will	be	refuted.	
frnt	H		:=			the	proposi)on	that	H	is	false	but	will	never	be	refuted.	
frnt	Hc		:=			the	proposi)on	that	H	is	true	but	will	never	be	verified.	
	
	

			

		

int H ext H 

w

bdry H 

frnt H 

frnt Hc 



Verifiability,	Refutability,	Decidability	

H	is	open	(verifiable)	iff			H	⊆	int(H).	

i.e.,	iff	H	will	be	verified	however	H	is	true.			
	
H	is	closed	(refutable)	iff		Hc is	open.	
		

	
H	is	clopen	(decidable)	iff		H	is	both	open	
and	closed.			

w
H 

w
H 

w
H 



•  Proposi:onal	methods	produce	proposi)onal	
conclusions	in	response	to	proposi)onal	informa)on.	

Proposi)onal	Methods	

M 
H	E	



•  A	verifica:on	method	for	H	is	an	method	M such	that	in	
every	world	w:	
1.  w	∈	H :				M	converges	infallibly	to	H;	
2.  w	∈	Hc :			V	always	concludes	W.	
	

Deduc)ve	Success	



•  A	verifica:on	method	for	H	is	an	method	M such	that	
in	every	world	w:	
1.  w	∈	H :				M	converges	to	H	and	never	concludes	Hc;	
2.  w	∈	Hc :			V	always	concludes	W.	

•  A	refuta:on	method	for	H	is	just	a	verifica)on	
method	for		Hc.	

Deduc)ve	Success	



•  A	verifica:on	method	for	H	is	an	method	M such	that	
in	every	world	w:	
1.  w	∈	H :				M	converges	to	H	and	never	concludes	Hc;	
2.  w	∈	Hc :			V	always	concludes	W.	

•  A	refuta:on	method	for	H	is	just	a	verifica)on	
method	for		Hc.	

•  A	decision	method	for	H	converges	to	H	or	to	Hc	
without	error.	

Deduc)ve	Success	



Proposi:on.			
If	M	is	a	verifier,	refuter,	or	decider	for	H,		
then	M	produces	only	conclusions	that	are	deduc)vely	
entailed	by	the	given	informa)on.	

Deduc)ve	Success	



Proposi:on.		H	has	a	verifier,	refuter,	or	decider	iff	H	is	
open,	closed,	or	clopen.			

The	Topology	of	Deduc)ve	Success	



•  A	limi:ng	verifica:on	method	for	H	is	a	method	M 
such	that	in	every	world	w:	
w	∈	H 		iff		M	converges	to	some	true	H’	that	entails	H.		

	
	

Induc)ve	Success	



•  A	limi:ng	verifica:on	method	for	H	is	a	method	M 
such	that	in	every	world	w:	
w	∈	H 		iff		M	converges	to	some	true	H’	that	entails	H.		

•  A	limi:ng	refuta:on	method	for	H	is	a	limi)ng	
verifica)on	method	for	Hc.	
	

Induc)ve	Success	



•  A	limi:ng	verifica:on	method	for	H	is	a	method	M 
such	that	in	every	world	w:	
w	∈	H 		iff		M	converges	to	some	true	H’	that	entails	H.		

•  A	limi:ng	refuta:on	method	for	H	is	a	limi)ng	
verifica)on	method	for	Hc. 

•  A	limi:ng	decision	method	for	H	is	a	limi)ng	
verifica)on	method	and	a	limi)ng	refuta)on	for	H.	

	

Induc)ve	Success	



Proposi:on.		No	limi)ng	verifier	of	“never	
awakened”	is	deduc)ve.			

Induc)ve	Success	

deduc)on	

induc)on	



H	is	locally	closed	iff	H	can	be	expressed	as	a	
difference	of	open	(verifiable)	proposi)ons.			
Thesis:		Scien)fic	models	are	locally	closed	
proposi)ons.	

Scien)fic	Models	



Topology	

Let		I*	denote	the	closure	of		I		under	union.		
	
Proposi:on:			
If	(W, I)		is	an	informa)on	basis		
then	(W, I*)	is	a	topological	space.		
	



Topology	

•  H	is	open				iff			H	∈	I*.	
•  H	is	closed		iff		Hc is	open.	
•  H	is	clopen	iff		H	is	both	closed	and	open.	

•  H	is	locally	closed	iff		H	is	a	difference	of	open	sets.	
	



Sleeping	Theorist	Example	

 
H2	=	“Awakened	twice”	is	open.	
 
H1	=	“Awakened	once”	is	locally	closed.	
 
H0	=	“Never	awakened”	is	closed.	
	



Sequen)al	Example	

H2	=	“You	will	see	1	exactly	twice”	is	open.	
H1	=	“You	will	see	1	exactly	once”	is	locally	closed.	
H0	=	“You	will	never	see	1”	is	closed.	
	

0				0				0				0				0				0				0				0				0				0				0	

1				0				0				0				0				0				0				0				0				0				0	
0	
0	
0	
1	



Equa)on	Example	

H2		=		“quadra)c”	is	open. 
H1		=		“linear”	is	locally	closed. 
H0		=		“constant”	is	closed.	
	



H	is	limi:ng	open	iff	H	can	be	expressed	as	a	
countable	union	of	locally	closed	proposi)ons.	
Theses:			
1.  Scien)fic	theories	are	limi)ng	open.		
2.  Each	locally	closed	disjunct	of	a	theory	is	a	

possible	ar:cula:on	of	the	theory.	
3.   Duhem’s	problem:		a	theory	in	trouble	can	

always	be	re-ar)culated	to	accommodate	the	
data.	

	

Scien)fic	Theories	and	Paradigms	



Equa)on	Example	

H0		=		the	true	law	is	polynomial.	
H1		=		the	true	law	is	a	trigonometric	polynomial.	
	



Topology	

•  H	is	limi:ng	open	iff	H	is	a	countable	union	of	locally	
closed	sets.	

•  H	is	limi:ng	closed	iff	Hc	is	limi)ng	open.	
•  H	is	limi:ng	clopen	iff	H	is	both	limi)ng	open	and	
limi)ng	closed.			

	



Theorem.	

			
	
	
	

open		
=	

methodologically	
verifiable	

clopen		
=	

methodologically	
decidable	

closed	
	=	

methodologically	
refutable	

limi)ng	clopen	
=	

methodologically	
limi)ng	decidable	

Debrecht	and	Yamamoto,	
Kyoto	Informa:cs	

limi)ng	closed	
=	

methodologically	
limi)ng	refutable	

limi)ng	open	
	=	

methodologically	
limi)ng	verifiable	



Theorem	

			
	
	
	

open		
=	

methodologically	
verifiable	

clopen		
=	

methodologically	
decidable	

closed	
	=	

methodologically	
refutable	

limi)ng	clopen	
=	

methodologically	
limi)ng	decidable	

limi)ng	closed	
=	

methodologically	
limi)ng	refutable	

limi)ng	open	
	=	

methodologically	
limi)ng	verifiable	

deduc:on	

induc:on	



THE	STATISTICAL	SETTING	



Can	We	Do	the	Same	for	Sta)s)cs?	
Kelly’s	topological	approach...	
“may	be	okay	if	the	candidate	theories	are	deduc:vely	
related	to	observa)ons,	but	when	the	rela)onship	is	
probabilis:c,	I	am	skep:cal	…”.	
	

Eliod	Sober,	Ockham’s	Razors,	2015	



Sta)s)cs	
•  Worlds	are	probability	measures	over	T.	
	

w 

S 

W 



•  A	sta:s:cal	verifica:on	method	for	H at	significance	level	α	>	0:	
1.  converges	in	probability	to	conclusion	H,	if	H	is	true.	
2.  always	concludes	W with	probability	at	least	1-α,	if	H	is	false.			

	
•  H	is	sta:s:cally	verifiable	iff	H	has	a	sta)s)cal	verifica)on	

method	at	each	α	>	0.		
	

Sta)s)cal	Verifica)on	



•  A	sta:s:cal	verifica:on	method	for	H at	level	α	>	0	is	a	
sequence	(Mn)	of	feasible	tests	of	Hc such	that	for	every	world	w	
and	sample	size	n:		

	
1.  if	w	∈	H :				Mn converges	in	probability	to	H;	
2.  If	w	∈	Hc :			Mn concludes	W with	probability	at	least	1-αn,	

	
for	αn à 0, and	dominated	by	α.	

		

Methods	



•  A	limi:ng	sta:s:cal	α-verifica:on	method	for	H		
1.  produces	only	conclusions	H	or	W 
2.  converges	in	probability	to	H	iff	H	is	true.			

 
•  H	is	sta:s:cally	verifiable	in	the	limit	iff	H	has	a	limi)ng	

sta)s)cal	α-verifica)on	method,	for	each	α	>	0.			

	

Sta)s)cal	Verific)on	in	the	Limit	



s 

Recall	the	Fundamental	Difficulty	

•  Every	sample	is	logically	consistent	with	all	worlds!		
•  So	it	seems	that	sta)s)cal	informa)on	states	are	all	
trivial!	

S 

W 
w 



The	Main	Result	
•  Under	mild	and	natural	assump)ons...	
•  there	exists	a	unique	and	familiar	topology	on	
probability	measures	for	which...	

	
	



The	Main	Result	

			
	
	
	

open		
=		

methodologically
verifiable	

clopen		
=	

methodologically		
decidable	

closed	
	=	

methodologically	
refutable	

limi)ng	clopen	
=	

methodologically	
limi)ng	decidable	

limi)ng	closed	
=	

methodologically	
limi)ng	refutable	

limi)ng	open	
	=	

methodologically	
limi)ng	verifiable	

deduc:on	

induc:on	



So	in	Both	Logic	and	Sta)s)cs:	

			
	
	
	

open		
=		

methodologically
verifiable	

clopen		
=	

methodologically		
decidable	

closed	
	=	

methodologically	
refutable	

limi)ng	clopen	
=	

methodologically	
limi)ng	decidable	

limi)ng	closed	
=	

methodologically	
limi)ng	refutable	

limi)ng	open	
	=	

methodologically	
limi)ng	verifiable	

deduc:on	

induc:on	



From	Logic	to	Sta)s)cs	
•  Start	with	purely	(topo)logical	insights	about	
scien)fic	methodology.	

•  Transfer	them	to	sta)s)cs	via	the	preceding	result.	
	

	
	

Logic	

Sta)s)cs	



The	Key	Idea	
•  Even	with	arbitrarily	powerful	magnifica)on,	it	is	
infeasible	to	verify	that	a	given	cube	is	exactly	2	
inches	wide.			

	
	

(						)	

X 0	



The	Key	Idea	
•  Similarly,	it	is	awkward	to	say	that	a	given	adempt	at	
measuring	length	yields	exactly	a	given	value.			

•  More	decimal	places	of	expansion	might	violate	
exact	iden)ty	at	any	stage	of	approxima)on:	

– 2.357800000000000000000000000000001.	
	
	



The	Key	Idea	
•  So	if	there	were	a	non-zero	chance	of	a	sample	
hitng	exactly	on	the	boundary	of	the	acceptance	
zone	of	a	sta)s)cal	test...	

•  one	would	have	a	non-zero	chance	of	implemen:ng	
the	test	incorrectly.	

•  I.e.,	the	test	would	be	infeasible.	

•  A	sample	event	is	almost	surely	decidable	in	W	iff	
every	possible	probability	measure	in	W	assigns	its	
boundary	chance	0.	

	
	



Almost	Surely	Decidable		
Sample	Events	

•  A	sample	event	is	almost	surely	decidable	in	W	iff	
there	is	zero	chance	that	a	sampled	measurement	
hits	exactly	on	its	boundary.	

	
	



The	Weak	and	Natural	Assump)ons	
1.  Entertain	only	feasible	methods	whose	acceptance	

zones	for	various	hypotheses	are	almost	surely	
decidable.			

2.  The	sample	space	has	a	countable	basis	of	almost	
surely	decidable	regions.	
–  True	for	discrete	random	variables.	
–  True	for	con)nuous	random	variables.	

3.  Sampling	is	IID.	

	
	



Epistemology	of	the	Sample	
•  The	sample	space	S  always	comes	with	its	own	
topology	T.	

•  T	reflects	what	is	verifiable	about	the	sample	itself.	
	

S s 

Z 

s	definitely	falls	within	open	interval	Z .  



Feasible	Sample	Events	
•  It’s	impossible	to	decide	whether	a	sample	that	lands	
right	on	the	boundary	of	sample	zone	Z	is	really	in	or	
out	of	Z.	

•  Z	is	feasible	iff	the	chance	of	its	boundary	is	zero	in	
every	world,	i.e.	Z	is	almost	surely	decidable.		

S 

W 
w 

Z 



Feasible	Method	
A	feasible	method	M	is	a	sta)s)cal	method	whose	
acceptance	zones	for	various	conclusions	are	all	feasible.	

A B 

S 

W 

infer A infer B 



Feasible	Tests		
A	feasible	test	of	H	is	a	feasible	method	that	outputs	Hc	
or	W.			

Hc H Hc 

S 

W 
w 

infer W infer Hc infer Hc 



The	Weak	Topology	
w	∈	cl	H	iff	there	exists	sequence	(wn)	in	H,	such	that	
for	all	feasible	tests	M	:	

S 

W 
w 

H



Weak	Topology	
Proposi:on:		If	T has	a	countable	basis	of	feasible	
regions,	then:	
						sta)s)cal	informa)on	topology		=		weak	topology.	



Weak	Topology	
Proposi:on:		If	T is	second-countable	and	metrizable,	
then	the	weak	topology	is	second-countable	and	
metrizable	e.g.,	by	the	Prokhorov	metric.		
	
	
	
	



•  A	sta:s:cal	verifica:on	method	for	H at	level	α	>	0	is	a	
sequence	(Mn)	of	feasible	tests	of	Hc such	that	for	every	world	w	
and	sample	size	n:		

	
1.  if	w	∈	H :				Mn converges	in	probability	to	H;	
2.  If	w	∈	Hc :			Mn concludes	W with	probability	at	least	1-αn,	

	
for	αn à 0, and	dominated	by	α.	

		

Methods	



Conjecture:		For	any	open	H	and	α	>	0,	 there	exists	(Mn)		
a	verifica)on	method		at	level	α such	that	if	w	∈	H:  
  

1.  if	w	∈	H :				 	
2.  if	w	∈	Hc :				

for	all	n2 > n1. 	
	
	

Monotonicity	

pn2
w (Mn2 = H) + ↵ > pn1

w (Mn1 = H),

pn2
w (Mn2 = W ) > pn1

w (Mn1 = W ),



Topological	Simplicity	

It	s)ll	makes	sense	in	terms	of	sta)s)cal	informa)on	
topology!	

H1 CH2 CH3.

ACB , A \ cl(B) \B 6= ?.
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Concern:	“compa)bility	with	E”	is	no	longer	meaningful.	
	
Response:		the	third	formula)on	of	O.R.	does	not	men)on	
compa)bility	with	experience!	
	
	
	

Ockham’s	Sta)s)cal	Razor	



APPLICATION:		OCKHAM’S	STATISTICAL	
RAZOR	(UNDER	CONSTRUCTION)	



Ockham’s	α-Razor	
Sta)s)cal	version	of	the	error-razor:	

A	sta)s)cal	method	is	α-Ockham	iff	the	chance	
that	it	outputs	an	answer	more	complex	than	the	
true	answer	is	bounded	by	α.	

	

Agrees	with	significance	for	simple	vs.	complex	binary	
ques)ons!	

1 ₋ α	
S 

W 
w 

Z 



If	you	violate	Ockham’s	razor	with	chance	α,	then	
1.  either	you	fail	to	converge	to	the	truth	in	chance	or		
2.  nature	can	force	you	into	an	α-cycle	of	opinions	

(complex-simple-complex),	even	though	such	cycles	are	
avoidable.	

	
                                 
                              	
	
	
	
	

Epistemic	Mandate	for	Ockham’s	Razor	

H0												H1												H2		

avoidable	

unavoidable	



O-Cycle	Solu)on,	Uniform	Case	
•  Worlds:		uniform	distribu)ons	with	unit	square	support	
•  Ques)on:	which	mean	components	are	non-zero?	
•  Method:	output	the	simplest	answer	such	that	no	sample	

point	falls	outside	of	its	zone.			

X	 X	

Y	

Y	

O	

S	S	

S	 S	



•  Say	that	a	solu)on	is	progressive	iff	the	objec)ve	chance	
that	it	outputs	the	true	answer	is	an	increasing	func)on	of	
sample	size.	

	
•  Say	that	a	solu)on	is	α-progressive	iff	the	chance	that	it	
outputs	the	true	answer	never	decreases	by	more	than	α.	

	
                                 
                              	
	
	
	
	

Progressive	Methods	



•  Proposi:on:		If	there	is	an	enumera)on	of	the	
answers	A1, A2, A3, … agreeing	with	the	
simplicity	order,	then	there	is	an	α-
progressive	solu)on	for	every	α.	

Result	

(Whenever	α-monotonic	verifiers	exist	for	ext	Ai)	



•  Proposi:on:		Every	α-progressive	solu)on	is	
α-Ockham.	

Result	



How	much	prior	bias	toward	simple	models	is	necessary	
to	avoid	α-cycles?			

X	Indifference	=	ignorance.	

✓truth-conduciveness.	

	
		
	
	
	
	
	
	

A	New	Objec)ve	Bayesianism	



CONCLUSION	



1.   Develop	basic	methodological	ideas	in	topology.	
2.   Port	them	to	sta:s:cs	via	sta:s:cal	informa:on	

topology.	
	
	
	
	
	
	

A	Method	for	Methodology	



1.   Informa:on	topology	is	the	structure	of	the	scien)st’s	
problem	context.	

2.  The	apparent	analogy	between	sta)s)cal	and	ideal	
methodology	reflects	shared	topological	structure.	

3.  Thereby,	ideal	logical/topological	ideas	can	be	ported	
directly	to	sta)s)cs.	

4.  The	result	is	a	new,	systema)c,	frequen:st	founda)on	
for	induc:ve	inference	and	Ockham’s	razor.	

Some	Concluding	Remarks	



ETC.	



•  Causal	network	inference	from	retrospec:ve	data.	
•  That	is	an	induc:ve	problem.	
•  The	search	is	strongly	guided	by	Ockham’s	razor.	
•  We	have	the	only	non-Bayesian	founda:on	for	it.	
	
	
	
	

Applica)on:	Causal	Inference	from	
Non-experimental	Data	



•  All	scien)fic	conclusions	are	supposed	to	be	
counterfactual.	

•  Scien)fic	inference	is	strongly	simplicity	biased.	
•  Standard	ML	accounts	of	Ockham’s	razor	do	not	apply	
to	such	inferences	(J.	Pearl).			

•  Our	account	does.			
	
	
	
	

Applica)on:	Science	



OCKHAM’S	TOPOLOGICAL	RAZOR	



Popper	Was	Doing	Topology	

  Popper’s	simplicity	rela)on:	

A � B , A ✓ clB.

H1 � H2 � H3.



An	Improvement	

  	

H1 CH2 CH3.

ACB , A \ cl(B) \B 6= ?.



Topological	Simplicity	
1.  Mo)vated	by	the	problem	of	induc)on.	
2.  Depends	only	on	the	structure	of	possible	

informa)on.	
3.  Independent	of	nota)on.	
4.  Independent	of	parameteriza)on.	
5.  Independent	of	prior	probabili)es.	
6.  Non-trivial	in	0-dimensional	spaces.	



•  A	ques:on	par))ons	W	into	possible	answers.		
•  A	relevant	response	is	a	disjunc)on	of	answers.	
•  A	solu:on	is	a	method	that	converges	to	the	true	
answer	in	every	world	in	W.	

	
	
Proposi:on.		The	following	principles	are	equivalent.	
1.  Infer	a	simplest	relevant	response	in	light	of	E.	
2.  Infer	a	refutable	relevant	response	compa)ble	with	E.	
3.  Infer	a	relevant	response	that	is	not	more	complex	

than	the	true	answer.	
	
	
	

Ockham’s	Razor	



If	you	violate	Ockham’s	razor	then	
1.  either	you	fail	to	converge	to	the	truth	or		
2.  nature	can	force	you	into	an	avoidable	cycle	of	opinions.	
	
                                 
                              	
	
	
	
	

Epistemic	Mandate	for	Ockham’s	Razor	

H0												H1												H2		

avoidable	

unavoidable	



Indeed,	by	favoring	a	complex	hypothesis,	you	incur	the	
avoidable	cycle	in	a	complex	world!	
	
	
	
	

Does	Not	Presuppose	Simplicity	

H0												H1												H2		

avoidable	

unavoidable	



•  Proposi:on:		Every	cycle-free	solu)on	sa)sfies	
Ockham’s	razor.	

Result	



The	Idea	

X

Y

2	

1	

0	

		
Ockham	
viola)on	



The	Idea	

X

Y

2	

1	

0	

		

On	pain	of	not	
converging	to	
the	truth.	



The	Idea	

X

Y

2	

1	

0	

		

On	pain	of	not	
converging	to	
the	truth.	



Result	

•  Proposi:on	(Baltag,	Gierasimczuk,	and	Smets):		Every	
solvable	ques)on	is	refinable	to	a	locally	
closed	ques)on	with	a	cycle-free	solu)on.	


