

Induction and Deduction in Statistics

{Kevin T. Kelly, Konstantin Genin} Carnegie Mellon Universisty

Belgrade 2016

The First Cut in the Philosophical Pie

- All the objects of human...enquiry may naturally be divided into two kinds, to wit,
- Relations of Ideas, and
- Matters of Fact.

David Hume, *Enquiry*, Section IV, Part 1.

The First Cut in the Philosophical Pie

- Any ... inference in science belongs to one of two kinds:
 - 1. either it yields **certainty** in the sense that the **conclusion** is **necessarily true**, provided that the premises are true,
 - 2. or it does not.
- The first kind is that of **deductive inference**...
- The second kind will here be called 'inductive inference'.
- R. Carnap, The Continuum of Inductive Methods, 1952, p. 3.

The First Cut in the Philosophical Pie

Deductive inference:

- Truth preserving.
- Stable (monotonic).
- Non-ampliative.
- Inductive inference:
 - Everything else.

Deduction

- Calculation
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

Induction

- Inferring universal H
- Choosing between universal H₀,
 H₁, H₂, ...

Deduction

- Calculation
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

Induction

- Inferring universal H
- Choosing between universal H₀,
 H₁, H₂, ...

Assuming **deterministic** data!

Deduction

- Calculation
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

Induction

- Inferring universal H
- Choosing between universal H₀,
 H₁, H₂, ...

Assuming **stochastic** data...

Deduction

Calculation

- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

Induction

- Inferring universal H
- Choosing between universal H₀,
 H₁, H₂, ...
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

Assuming **stochastic** data...

Deduction

- Calculation
- Refuting universal H

Induction

- Inferring universal H
- Choosing between universal H₀,
 H₁, H₂, ...
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

and all continuous measurement is stochastic!

Deduction

Calculation

- Refuting universal H
- Verifying existential H

Induction

- Inferring universal H
- Choosing between universal H₀,
 H₁, H₂, ...
- **Refuting** universal *H*
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*

Also, **real calculation** occasions **probable error** from numerical approximation, human error, and cosmic rays.

Deduction

- Calculation
- Refuting universal H
- Verifying existential H

Induction

- Inferring universal H
- Choosing between universal H₀,
 H₁, H₂, ...
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting *E* from *H*
- Hypotheses compatible with *E*
- Calculation

Also, **real** calculation occasions probable error from numerical approximation, human error, and cosmic rays.

Deduction

- Verifying existential H
- Deciding between universal H, H'
- Hypotheses comp

Boooring!

Induction

- Inferring universal H ۲
- Choosing between universal H_0 , $H_1, H_2, ...$
- **Refuting** universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting E from H
- Hypotheses compatible with E
- Calculation

A More Revealing First Cut

Ideal

Statistical

Refuting universal H_0	Rejecting simple H_0
Verifying existential H_1	Accepting composite H_1
Deciding between universal H_0 , H_1	Deciding between simple H_{0} , H_{1}
Predicting E from H	Direct inference from simple H
Hypotheses compatible with E	Confidence interval
Ideal calculation	Real calculation
Inferring universal H	Inferring simple $H_{\rm s}$
Chapping that we are universal H_0	Model coloction
Choosing between universal H_0 , H_1 ,	
П ₁ ,	

Deduction Induction

Ideal Methods

Deductive

- Stable
- Guaranteed to avoid error

Inductive

- Unstable
- Not guaranteed to avoid error

Statistical Methods

Deductive

- Stable in chance
- Guaranteed low chance of error

Inductive

- Unstable in chance
- No guarantee of low chance of error.

Deeper Question

Can one represent deductive statistical methods as literally **deducing** their conclusions from **statistical information**?

Deeper Question

Can one represent deductive statistical methods as literally **deducing** their conclusions from **statistical information**?

Yes.

The Structure of Ideal Information

X Logic X Probability Topology

Worlds

• The points in *W* are **possible worlds**.

The Structure of Information

An **information basis** I is a **countable** set of propositions called **information states** such that :

- 1. each world makes some information state true;
- 2. each pair of true information states is entailed by a true information state.

The Structure of Information

$\mathcal{I}(w) := \{ E \in \mathcal{I} : w \in E \}.$

Simplest Example: Alarm Clock

• The theorist is **awakened** by her graduate students only when her theory is refuted.

Example: Sequential Binary Experiment

Worlds = infinite discrete sequences of outcomes. **Information states** = cones of possible extensions:

Example: Measurement of X

- Worlds = real numbers.
- Information states = open intervals.

Example: Joint Measurement

- Worlds = points in real plane.
- Information states = open rectangles.

Example: Equations

• Worlds = functions $f : \mathbb{R} \to \mathbb{R}$.

Example: Laws

• An **observation** is a joint measurement.

Example: Laws

• The **information state** is the set of all worlds that touch each observation.

Deductive Verification and Refutation

H is **verified** by *E* iff $E \subseteq H$.

H is **refuted** by *E* iff $E \subseteq H^c$.

H is **decided** by *E* iff *H* is either verified or refuted by *E*.

Will be Verified

w is an **interior [exterior] point** of *H* iff iff *H* **will be** verified [refuted] in *w*

iff there is $E \in \mathcal{I}(w)$ s.t. *H* is verified [refuted] by *E*.

Will be Verified

- **int** *H* := the proposition that *H* **will be verified**.
- **ext** *H* := the proposition that *H* **will be refuted**.
- **bdry** *H* := the proposition that *H* **will never be decided.**

Will be Verified

- $bdry(H) \cap H = "you face Hume's problem w.r.t. H";$
- $bdry(H) \cap H^c = "you face$ **Duhem's problem**w.r.t. H"

Verifiability, Refutability, Decidability

H is **verifiable** iff $H \subseteq int(H)$.

i.e., iff *H* will be verified however *H* is true.

H is **refutable** iff $cl(H) \subseteq H$. i.e., iff *H* will be **refuted** however *H* is false.

H is **decidable** iff H is both verifiable and refutable.

Methods

- A verification method for *H* is an inference rule *V*(*E*) = *A* such that in every world *w*:
 - *1.* $w \in H$: *V* converges to *H* without error.
 - 2. $w \in H^c$: V always concludes W.

Methods

- A verification method for *H* is an inference rule V(E) = A such that in every world *w*:
 - *1.* $w \in H$: *V* converges to *H* without error.
 - 2. $w \in H^c$: V always concludes W.
- A **refutation method** for H is just a verification method for H^c .
- A decision method for *H* converges to *H* or to *H*^c without error.

Methods

- A verification method for *H* is an inference rule V(E) = A such that in every world *w*:
 - *1.* $w \in H$: *V* converges to *H* without error.

2. $w \in H^c$: V always concludes W.

- A **refutation method** for *H* is just a verification method for *H*^c.
- A decision method for *H* converges to *H* or to *H*^c without error.
- *H* is **methodologically verifiable [refutable, decidable]** iff *H* has a method of the corresponding kind.
Verification is Deductive

Proposition (truth preservation and non-ampliativity). If *V* is a verifier, refuter or decider for *H* and V(E) = A, then $E \subseteq A$.

Proposition (monotonicity).

If there is a verifier, refuter or decider for H, then there is a monotonic one that never drops H or H^c after having concluded it.

Topology

Let \mathcal{I}^* denote the closure of \mathcal{I} under union.

Proposition:

If $\mathfrak{I} = (W, \mathfrak{I})$ is an information basis then $\mathfrak{I} = (W, \mathfrak{I}^*)$ is a topological space.

- *H* is **open** iff $H \in \mathcal{I}^*$.
- H is **closed** iff H^c is open.
- *H* is **clopen** iff *H* is both **closed** and **open**.

Methodology = Topology

Proposition.

- **1. open** = verifiable = methodologically verifiable.
- **2. closed** = refutable = methodologically refutable.
- **3. clopen** = decidable = methodologically decidable.

Simplest Example

 H_0 = "I will never be awakened" is closed. H_1 = "I will eventually be awakened" is open.

Sequential Examples

 H_0 = "every outcome is green" is closed. H_1 = "some outcome is blue" is open.

Sequential Examples

 H_0 = "every outcome is green" is closed. H_1 = "some outcome is blue" is open.

STATISTICAL DEDUCTION AND ITS TOPOLOGY

Statistical Methodology

 Does information topology also shed light on statistically deductive methods and problems?

Skepticism

The approach...

"may be okay if the candidate theories are **deductively** related to observations, but when the relationship is **probabilistic**, I am **skeptical** ...".

Eliott Sober, Ockham's Razors, 2015

Skepticism

- If it's interesting to guess that something is impossible...
- then it's surely interesting to demonstrate that it is necessary.

Eliott Sober, Ockham's Razors, 2015

Statistical Information Topology

Possibilities nearer to the truth should be harder to rule out by statistical information.

Gathering Statistical Information

- 1. The sample space S has its own (metrizable) topology.
- 2. Choose a sample event *Z* over *S*.
- 3. Obtain sample *s*.
- 4. Observe whether *Z* occurs.

Feasible Sample Events

• But every non-trivial Z on the real line has boundary points.

Feasible Sample Events

• You can't really determine whether a sample hits exactly on the boundary.

Feasible Sample Events

- That doesn't matter statistically as long as the boundary carries 0 probability.
- So Z is an observationally feasible sample event iff
 p(bdry Z) = 0, for each p in W.
- I.e, feasible Z is almost surely clopen (decidable) in S.

Feasible Statistical Models

• *S* is **feasible** for *W* iff

S has a countable topological basis of feasible zones.

Statistical Information Topology

$w \in cl(H)$ iff

H contains a sequence of worlds $w_0, ..., w_n, ...$ such that for every feasible sample event $Z \subseteq S$:

$$\operatorname{Lim}_{i\to\infty} p_{w_i}(Z) = p_w(Z).$$

For Those Who Care

Proposition: Assuming that S is feasible for W,

statistical information topology = weak topology.

IID Sampling

Proposition.

- If *S* is **feasible** for *W*, then:
- 1. S^N is feasible for the IID product measures w^N such that $w \in W$;
- 2. The information topology on W^N is **homeomorphic** to the information topology on W.

Feasible Statistical Methods

A feasible statistical method at sample size N is a function M^N from sample events in S^N to propositions over W such that:

 $(M^N)^{-1}(H)$ is **feasible**.

A feasible statistical method is a collection $\{M^N : N \in \mathbf{N}\}$

of feasible statistical methods at each sample size.

Statistical Verification Methods

• A statistical verification method at level $\alpha > 0$ for H is a feasible statistical method $\{V^N : N \in \mathbf{N}\}$ with range $\{W, H\}$ such that:

1. for
$$w \in H$$
: $\lim_{N} p_w^N(V^N = H) = 1$;
2. for $w \notin H$: $p_w^N(V^N = H) \le \alpha$, for all N .

- A statistical **refutation** method at level $\alpha > 0$ for *H* is a statistical verification method for H^{c} .
- A statistical **decision** method at level $\alpha > 0$ for *H* is both.
- *H* is statistically verifiable [refutable, decidable] iff *H* has a statistical verification [refutation, decision] method at each level α > 0.

The Topology of Statistical Methodology

Proposition. Suppose that S is feasible for W. Then:

- **1. open** = statistically verifiable.
- **2. closed** = statistically refutable.
- **3. clopen** = statistically decidable.

Stability

Conjecture: The methods can be constructed to be **monotonic** in chance of producing *H*.

Conjecture: the α level can be made to converge **monotonically** to 0.

Information Basis

Define **intervals** of worlds w.r.t. Z:

$$E_Z(a,b) = \{ v \in W : a < p_v(Z) < b \}.$$

Information Basis

Proposition. Let \mathcal{B} be a feasible, countable basis for S that (w.l.o.g) is closed under finite intersection.

Then:

$$\mathcal{I} = \{ E_Z(a, b) : a, b \in \mathbb{Q} \land a < b \land Z \in \mathcal{B} \}$$

is a **countable basis** for the statistical information topology on *W*.

Ideal Statistical Information

- Think of statistically verified basis elements as ideal statistical information available for other methods.
- Let $\{E_0, ..., E_i, ...\}$ enumerate *I*.
- Let V_i statistically verify E_i at level $\alpha/2^i$.

Let *H* be open (statistically verifiable). Let $V_H(s) = H$ iff there exists $E_i \subseteq H$ such that $V_i(s) = E_i$.

Proposition. V statistically verifies H at level α .

Moral. You can safely **think of** statistical verification of H as literal **deduction** of H from **ideal statistical information** E_i .

Similarly for refutation and decision.

	Ideal	Statistical
closed	universal H ₀	simple null H ₀
open	existential H_1	composite alternative H_1
clopen	exhaustive universal H_0 , H_1 .	exhaustive simple H_0 , H_1 .

EXTENSION TO STATISTICAL INDUCTIVE INFERENCE

Inductive Inference

Ideal method D converges to H in w iff there exists $E \in \mathcal{I}(w)$ such that for all $F \in \mathcal{I}(w)$ for which $F \subseteq E$, $D(F) \subseteq H$.

Statistical method D converges to H in w iff $\lim_{N\to\infty} p_w^N(D=H) = 1.$

Inductive Inference

• *D* verifies *H* in the limit iff:

 $w \in H \iff D$ converges to H.

- *D* refutes *H* in the limit iff *D* verifies *H*^c in the limit.
- *D* decides *H* in the limit iff *D* both verifies and refutes H in the limit.

Borel Hierarchy*

Both Ideally and Statistically

EXTENSION TO OCKHAM'S RAZOR
Simplicity

• Simplicity can be defined topologically:

 $A < B \ \Leftrightarrow \ A \cap \mathsf{cl}(B) \cap B^c \neq \varnothing.$

Epistemic Argument for the Razor

Ideal case:

- If you violate Ockham's razor then
- 1. either you fail to converge to the truth or
- nature can force you into a cycle of opinions (complexsimple-complex), even though such cycles are avoidable.

Epistemic Argument for the Razor

Statistical case:

- If you **violate Ockham's razor** with chance α , then
- 1. either you **fail to converge** to the truth in chance or
- nature can force you into an α-cycle of opinions (complex-simple-complex), even though such cycles are avoidable.

No Assumption that Reality s Simple

Indeed, by **favoring** a **complex** hypothesis, you incur the cycle in a **complex** world!

Application: Causal Inference from Non-experimental Data

- Causal network inference from retrospective data.
- That is an **inductive** problem.
- The search is strongly guided by **Ockham's razor**.
- We have the only non-Bayesian foundation for it.

Symbols: "A" = cause (YFV); "B" = outcome (cancer); "C" = confounders (recreational solar exposure and high social class); "D" and "E" = mediators (HERV-K antigen and immune response).

Application: Science

- All scientific conclusions are supposed to be counterfactual.
- Scientific inference is strongly simplicity biased.
- Standard ML accounts of Ockham's razor do not apply to such inferences (J. Pearl).
- Our account does.

A New Objective Bayesianism?

How much **prior bias toward simple models** is necessary to avoid α -cycles?

A Method for Methodology

- 1. **Develop** basic methodological ideas in **topology**.
- 2. Port them to statistics via the statistical information topology.

Some Concluding Remarks

- Information topology is the structure of the scientist's problem context.
- 2. The apparent **analogy** between statistical and ideal verifiability reflects **shared topological structure**.
- Indeed, one can think of basis elements as propositional statistical information from which statistical conclusions can be literally deduced.
- 4. Thereby, **ideal logical/topological ideas** can be **ported** in a direct and uniform fashion to statistics.