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The	First	Cut	in	the	Philosophical	Pie	

•  All	the	objects	of	human...enquiry	may	
naturally	be	divided	into	two	kinds,	to	wit,		

•  Rela%ons	of	Ideas,	and		
•  Ma.ers	of	Fact.		
	David	Hume,	Enquiry,	Sec(on	IV,	Part	1.	

	
	



The	First	Cut	in	the	Philosophical	Pie	

•  Any	...	inference	in	science	belongs	to	one	of	two	kinds:		
1.  either	it	yields	certainty	in	the	sense	that	the	conclusion	is	

necessarily	true,	provided	that	the	premises	are	true,		
2.  or	it	does	not.		

•  The	first	kind	is	that	of	deduc&ve	inference...	
•  The	second	kind	will	here	be	called	'induc&ve	inference'.		
•  R.	Carnap,	The	Con.nuum	of	Induc.ve	Methods,	1952,	p.	3	.	

	



The	First	Cut	in	the	Philosophical	Pie	

•  Deduc&ve	inference:	
–  Truth	preserving.			
–  Stable	(monotonic).			
–  Non-amplia(ve.			
	

•  Induc&ve	inference:	
–  Everything	else.	

	
	
	



Inference	in	Science	

Deduc(on	
•  Calcula(on	
•  Refu(ng	universal	H	
•  Verifying	existen(al	H	
•  Deciding	between	universal	H,	H’	
•  Predic(ng	E	from	H	
•  Hypotheses	compa(ble	with	E	

	

Induc(on	
•  Inferring	universal	H	
•  Choosing	between	universal	H0	,	

H1	,	H2	,	...	
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Inference	in	Science	

Deduc(on	
•  Calcula(on	
•  Refu(ng	universal	H	
•  Verifying	existen(al	H	
•  Deciding	between	universal	H,	H’	
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•  Inferring	universal	H	
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•  Refu(ng	universal	H	
•  Verifying	existen(al	H	
•  Deciding	between	universal	H,	H’	
•  Predic(ng	E	from	H	
•  Hypotheses	compa(ble	with	E	

and	all	con(nuous	measurement	is	stochas(c!	

determinis(c	system	

measurement	error	
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Inference	in	Science	

Deduc(on	
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Boooring!	



A	More	Revealing	First	Cut	

Refu(ng	universal	H0	
Verifying	existen(al	H1	
Deciding	between	universal	H0	,	H1	
Predic(ng	E	from	H	
Hypotheses	compa(ble	with	E	
Ideal	calcula(on	

	

Rejec(ng	simple	H0 

Accep(ng	composite	H1	

Deciding	between	simple	H0	,	H1	
Direct	inference	from	simple	H	
Confidence	interval	
Real	calcula(on	

Inferring	universal	H0	
Choosing	between	universal	H0	,	H1,	
H1	,	...	

	

Inferring	simple	H0	

Model	selec(on	

Sta(s(cal	Ideal	

De
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c(
on
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Ideal	Methods	

Deduc&ve		
•  Stable		
•  Guaranteed	to	avoid	error	

Induc&ve		
•  Unstable	
•  Not	guaranteed	to	avoid	error	



Sta(s(cal	Methods	

Deduc&ve		
•  Stable	in	chance	
•  Guaranteed	low	chance	of	

error	

Induc&ve		
•  Unstable	in	chance	
•  No	guarantee	of	low	chance	of	

error.	



Deeper	Ques(on	

Can	one	represent	deduc(ve	sta(s(cal	
methods	as	literally	deducing	their	
conclusions	from	sta&s&cal	informa&on?	
	
		



Deeper	Ques(on	

Can	one	represent	deduc(ve	sta(s(cal	
methods	as	literally	deducing	their	
conclusions	from	sta&s&cal	informa&on?	
	
Yes.	



The	Structure	of	Ideal	Informa(on	

Logic	
Probability	
Topology	

X 
X 



Worlds	

•  The	points	in	W	are	possible	worlds.	

w

W



The	Structure	of	Informa(on	

An	informa&on	basis	I	is	a	countable	set	of	proposi(ons	
called	informa&on	states	such	that	:	
1.  each	world	makes	some	informa(on	state	true;	
2.  	each	pair	of	true	informa(on	states	is	entailed	by	a	

true	informa(on	state.	

A B
C

W

w



The	Structure	of	Informa(on	

		

W

w

I(w) := {E 2 I : w 2 E}.



Simplest	Example:		Alarm	Clock	

•  The	theorist	is	awakened	by	her	graduate	
students	only	when	her	theory	is	refuted.	



Worlds	=	infinite	discrete	sequences	of	outcomes.	
Informa&on	states	=	cones	of	possible	extensions:	

	

Example:		Sequen(al	Binary	Experiment	

.	.	.	

.	.	.	

observed	so	far	

possible	extensions	



Example:		Measurement	of	X 

•  Worlds	=	real	numbers.	
•  Informa&on	states	=	open	intervals.	

(						)	

X 0	



Example:		Joint	Measurement	

•  Worlds	=	points	in	real	plane.	
•  Informa&on	states	=	open	rectangles.	

(0,	0)	

(		)	

(						)	

X	

Y	



Example:		Equa(ons	

•  Worlds	=	func(ons		
	

f : R ! R.

f



Example:		Laws	

•  An	observa&on	is	a	joint	measurement.	
	

f
(x,	x’)	

(y
,	y
’)	



Example:		Laws	

•  The	informa&on	state	is	the	set	of	all	worlds	
that	touch	each	observa(on.	

	



Deduc(ve	Verifica(on	and	Refuta(on	

H	is	verified	by	E			iff		E	⊆	H.	
H	is	refuted	by	E			iff		E	⊆	Hc.	
H	is	decided	by	E			iff		H	is	either	verified	or	refuted	by	E.	
	

w

H Hc 



Will	be	Verified	
w	is	an	interior	[exterior]	point	of	H	iff		

	iff	H	will	be	verified	[refuted]	in	w		
	iff	there	is	E	∈	I(w)	s.t.	H	is	verified	[refuted]	by	E.	

w

H Hc 



Will	be	Verified	
int	H					:=			the	proposi(on	that	H	will	be	verified.	
ext	H				:=			the	proposi(on	that	H	will	be	refuted.	
bdry	H		:=			the	proposi(on	that	H	will	never	be	decided.	
	

			

		

int Hc 
int H ext H 

ext Hc 

w

bdry H 

bdry Hc 



Will	be	Verified	
•  bdry(H)	∩	H		=	“you	face	Hume’s	problem	w.r.t.	H”;	
•  bdry(H)	∩	Hc  =	“you	face	Duhem’s	problem	w.r.t.	H”			

w

H Hc 

Hume(H)	Duhem(H)	
Duhem(Hc)	Hume(Hc)	



Verifiability,	Refutability,	Decidability	

H	is	verifiable		iff			H	⊆	int(H).	

i.e.,	iff	H	will	be	verified	however	H	is	true.			
	
H	is	refutable		iff		cl(H)	⊆	H.	
i.e.,	iff	H	will	be	refuted	however	H	is	false.			

	
H	is	decidable		iff		H	is	both	verifiable	and	
refutable.			

w
H 

w
H 

w
H 



•  A	verifica&on	method	for	H	is	an	inference	rule	V(E) = A such	
that	in	every	world	w:	
1.  w	∈	H :				V	converges	to	H	without	error.		
2.  w	∈	Hc :			V	always	concludes	W.	

Methods	



•  A	verifica&on	method	for	H	is	an	inference	rule	V(E) = A such	
that	in	every	world	w:	
1.  w	∈	H :				V	converges	to	H	without	error.		
2.  w	∈	Hc :			V	always	concludes	W.	

•  A	refuta&on	method	for	H	is	just	a	verifica(on	method	for		Hc.	
•  A	decision	method	for	H	converges	to	H	or	to	Hc	without	

error.	

Methods	



•  A	verifica&on	method	for	H	is	an	inference	rule	V(E) = A such	
that	in	every	world	w:	
1.  w	∈	H :				V	converges	to	H	without	error.		
2.  w	∈	Hc :			V	always	concludes	W.	

•  A	refuta&on	method	for	H	is	just	a	verifica(on	method	for		Hc.	
•  A	decision	method	for	H	converges	to	H	or	to	Hc	without	

error.	
•  H	is	methodologically	verifiable	[refutable,	decidable]	iff	H	

has	a	method	of	the	corresponding	kind.	

Methods	



Proposi&on	(truth	preserva(on	and	non-amplia(vity).		
If	V	is	a	verifier,	refuter	or	decider	for	H	and	V(E)	=	A,		
then	E	⊆	A.		
	
Proposi&on	(monotonicity).		
If	there	is	a	verifier,	refuter	or	decider	for	H,	then	there	is	a	
monotonic	one	that	never	drops	H or Hc	amer	having	
concluded	it.	

Verifica(on	is	Deduc(ve	



Topology	
Let		I*	denote	the	closure	of		I		under	union.		
	
Proposi&on:			
If		I	=	(W, I)		is	an	informa(on	basis		
then		I	=	(W, I*)	is	a	topological	space.		
	
•  H	is	open				iff			H	∈	I*.	
•  H	is	closed		iff		Hc is	open.	
•  H	is	clopen	iff		H	is	both	closed	and	open.	
																		
	
																												



Proposi&on.			
1.   open				=		verifiable			=		methodologically	verifiable.	
2.   closed		=		refutable			=		methodologically	refutable.	

3.   clopen		=		decidable		=		methodologically	decidable.	
	

Methodology	=	Topology	



Simplest	Example	

H0	=	“I	will	never	be	awakened”	is	closed.	
H1	=	“I	will	eventually	be	awakened”	is	open.	

W	

H1	



Sequen(al	Examples	

H0	=	“every	outcome	is	green”	is	closed.	
H1	=	“some	outcome	is	blue”	is	open.	

.	.
	.	

.	.
	.	

.	.
	.	

H0	 H1	

.	.
	.	

.	.
	.	



Sequen(al	Examples	

H0	=	“every	outcome	is	green”	is	closed.	
H1	=	“some	outcome	is	blue”	is	open.	

.	.
	.	

.	.
	.	

.	.
	.	

H0	 H1	

.	.
	.	

.	.
	.	H0	H0	W H1	H1	H1	H1	H1	



STATISTICAL	DEDUCTION	AND	ITS	
TOPOLOGY	



Sta(s(cal	Methodology	

•  Does	informa(on	topology	also	shed	light	on	
sta(s(cally	deduc(ve	methods	and	problems?		



Skep(cism	
The	approach...	
“may	be	okay	if	the	candidate	theories	are	deduc&vely	
related	to	observa(ons,	but	when	the	rela(onship	is	
probabilis&c,	I	am	skep&cal	…”.	
	

Eliop	Sober,	Ockham’s	Razors,	2015	



Skep(cism	
•  If	it’s	interes(ng	to	guess	that	something	is	
impossible...	

•  then	it’s	surely	interes(ng	to	demonstrate	that	it	is	
necessary.	

Eliop	Sober,	Ockham’s	Razors,	2015	



Sta(s(cal	Informa(on	Topology	
Possibili(es	nearer	to	the	truth	should	be	harder	to	rule	
out	by	sta(s(cal	informa(on.	

S 

W 
w H Hc 



Gathering	Sta(s(cal	Informa(on	
1.  The	sample	space	S	has	its	own	(metrizable)	topology.	
2.  Choose	a	sample	event	Z	over	S.			
3.  Obtain	sample	s.	
4.  Observe	whether	Z	occurs.	

w 

S 
Z 

s 



Feasible	Sample	Events	
•  But	every	non-trivial	Z	on	the	real	line	has	boundary	
points.	

	

S 
Z 



Feasible	Sample	Events	
•  You	can’t	really	determine	whether	a	sample	hits	
exactly	on	the	boundary.	

S 
Z 



Feasible	Sample	Events	
•  That	doesn’t	maper	sta(s(cally	as	long	as	the	
boundary	carries	0	probability.	

•  So	Z	is	an	observa(onally	feasible	sample	event	iff		
                   p(bdry	Z)	=	0,	for	each	p	in	W.	
•  I.e,	feasible	Z	is	almost	surely	clopen	(decidable)	in	S.			
	

S 
Z 



Feasible	Sta(s(cal	Models	
•  S	is	feasible	for	W		iff			

 S	has	a	countable	topological	basis	of	feasible	zones.			
	

S 
Z 



Sta(s(cal	Informa(on	Topology	
w	∈	cl(H)  iff			
H	contains	a	sequence	of	worlds	w0,	...,	wn,	...	such	that	
for	every	feasible	sample	event	Z	⊆	S:	

S 
Z 

W 
w H Hc 

Limi!1pwi(Z) = pw(Z).



For	Those	Who	Care	
Proposi&on:		Assuming	that	S	is	feasible	for	W,		
								sta(s(cal	informa(on	topology		=		weak	topology.	

S 
Z 

W 
w H Hc 



IID	Sampling	
Proposi&on.			
If	S	is	feasible	for	W,	then:		
1.  SN	is	feasible	for	the	IID	product	measures	wN	such	

that	w	∈	W	;	
2.  The	informa(on	topology	on	WN		is	homeomorphic	

to	the	informa(on	topology	on	W.			
	
	



A	feasible	sta&s&cal	method	at	sample	size	N	is	a	func(on	MN	
from	sample	events	in	SN	to	proposi(ons	over	W	such	that:	
	

      (MN)-1(H) is	feasible.	
	
A	feasible	sta&s&cal	method	is	a	collec(on		

	 	 	 	 	 	{MN			:		N	∈	N}		
	of	feasible	sta(s(cal	methods	at	each	sample	size.			
	

Feasible	Sta(s(cal	Methods	



•  A	sta&s&cal	verifica&on	method	at	level	α	>	0	for	H	is	a	feasible	
sta(s(cal	method	{VN			:		N	∈	N}	with	range	{W,	H}	such	that:		

		
1.  for	w	∈	H:	
2.  for	w	∈	H:	

•  A	sta(s(cal	refuta&on	method	at	level	α	>	0	for	H	is	a	sta(s(cal	
verifica(on	method	for	Hc. 

•  A	sta(s(cal	decision	method	at	level	α	>	0	for	H	is	both.	
	
•  H	is	sta&s&cally	verifiable	[refutable,	decidable]	iff	H	has	a	sta(s(cal	

verifica(on	[refuta(on,	decision]	method	at	each	level	α	>	0.		
	

Sta(s(cal	Verifica(on	Methods	

LimNpNw (V N = H) = 1;
pNw (V N = H)  ↵, for all N .



Proposi&on.		Suppose	that	S	is	feasible	for	W.		Then:	
1.   open			=		sta(s(cally	verifiable.	
2.   closed		=		sta(s(cally	refutable.	
3.   clopen		=		sta(s(cally	decidable.	
	

The	Topology	of		
Sta(s(cal	Methodology		



Conjecture:		The	methods	can	be	constructed	to	be		
monotonic	in	chance	of	producing	H.	
Conjecture:		the	α	level	can	be	made	to	converge	
monotonically	to	0.			
	

Stability	



Informa(on	Basis	
Define	intervals	of	worlds	w.r.t. Z: 
	

S 
Z 

W (				)	(				)	

EZ(a, b) = {v 2 W : a < pv(Z) < b}.



Informa(on	Basis	
Proposi&on.		Let	B	be	a	feasible,	countable	basis	for	S	that	
(w.l.o.g)	is	closed	under	finite	intersec(on.	
Then:	
	
is	a	countable	basis	for	the	sta(s(cal	informa(on	topology	on	W.	

S 
Z 

W (				)	(				)	

I = {EZ(a, b) : a, b 2 Q ^ a < b ^ Z 2 B}



Think	of	sta(s(cally	verified	basis	elements	as	ideal	
sta(s(cal	informa(on	available	for	other	methods.	
Let	{E0, ..., Ei, ...}	enumerate	I.			
Let	Vi	sta(s(cally	verify		Ei	at	level	α/2i.			
	
	

Ideal	Sta(s(cal	Informa(on	



Let	H	be	open	(sta(s(cally	verifiable).	
Let		VH(s) = H		iff		there	exists	Ei	⊆	H	such	that	Vi(s) = Ei.		

   	
Proposi&on.		V	sta(s(cally	verifies	H	at	level	α.		
	
Moral.		You	can	safely	think	of	sta(s(cal	verifica(on	of	H	as	literal	
deduc&on	of	H	from	ideal	sta&s&cal	informa&on	Ei.	
	
Similarly	for	refuta(on	and	decision.	
	

Sta(s(cal	Verifica(on	as	Deduc(on	



Sta(s(cal	Verifica(on	as	Deduc(on	

universal	H0	
existen(al	H1	
exhaus(ve	universal	H0	,	H1.	

	

simple	null	H0	
composite	alterna(ve	H1	

exhaus(ve	simple	H0	,	H1.	

Sta(s(cal	Ideal	
closed	
open	
clopen	

	



		
	

Sta(s(cal	Verifica(on	as	Deduc(on	

Sta(s(cal	
conclusions	
are	not	
entailed	by	
observa(ons.	



		
	

Sta(s(cal	Verifica(on	as	Deduc(on	

But	it	is	as	if	
they	were.	



EXTENSION	TO	STATISTICAL	
INDUCTIVE	INFERENCE	



Ideal	method	D	converges	to	H	in	w		iff			
there	exists	E	∈	I(w)	such	that	
for	all	F	∈	I(w)	for	which	F	⊆	E,					
                                  D(F)	⊆	H.		

		 	 	 	 	 	 	 		
Sta(s(cal	method	D	converges	to	H	in	w		iff			
	
	
	
	

Induc(ve	Inference	

LimN!1 pNw (D = H) = 1.



•  D	verifies	H	in	the	limit		iff:	

•  D	refutes	H	in	the	limit		iff	D	verifies		Hc	in	the	limit.	
•  D	decides	H	in	the	limit	iff	D	both	verifies	and	refutes	H	
in	the	limit.			

	
	
	
	
	

Induc(ve	Inference	

w 2 H , D converges to H.



	
	
	
	

Borel	Hierarchy*	

Σ1	
open	

Δ1	
clopen	

Π1	
closed	

Δ2	
both	Π2	and	Σ2	

Π2	
count.	int.	of	Σ1	

Σ2	
count.	un.	of	Π1	

*Assuming	the	topology	is:	
metrizable;	
has	countable	basis.	



	
	
	
	

Both	Ideally	and	Sta(s(cally	

Σ1	
verifiable	

Δ1	
decidable	

Π1	
refutable	

Δ2	
lim	decidable	

Π2	
lim	refutable	

Σ2	
lim	verifiable	

Bayesian	convergence,	
consistent	model	

selec(on	



EXTENSION	TO	OCKHAM’S	RAZOR	



•  Simplicity	can	be	defined	topologically:		

	
	
	
	

Simplicity	

A < B , A \ cl(B) \Bc 6= ?.



Ideal	case:	
•  If	you	violate	Ockham’s	razor	then	
1.  either	you	fail	to	converge	to	the	truth	or		
2.  nature	can	force	you	into	a	cycle	of	opinions	(complex-

simple-complex),	even	though	such	cycles	are	
avoidable.	

	
	
	
	

Epistemic	Argument	for	the	Razor	

Complex	

Simple	



Sta&s&cal	case:	
•  If	you	violate	Ockham’s	razor	with	chance	α,	then	
1.  either	you	fail	to	converge	to	the	truth	in	chance	or		
2.  nature	can	force	you	into	an	α-cycle	of	opinions	

(complex-simple-complex),	even	though	such	cycles	
are	avoidable.	

	
	
	
	

Epistemic	Argument	for	the	Razor	

Complex	

Simple	



Indeed,	by	favoring	a	complex	hypothesis,	you	incur	the	
cycle	in	a	complex	world!	
	
	
	
	

No	Assump(on	that	Reality	s	Simple	

Complex	

Simple	



•  Causal	network	inference	from	retrospec&ve	data.	
•  That	is	an	induc&ve	problem.	
•  The	search	is	strongly	guided	by	Ockham’s	razor.	
•  We	have	the	only	non-Bayesian	founda&on	for	it.	
	
	
	
	

Applica(on:	Causal	Inference	from	
Non-experimental	Data	



•  All	scien(fic	conclusions	are	supposed	to	be	
counterfactual.	

•  Scien(fic	inference	is	strongly	simplicity	biased.	
•  Standard	ML	accounts	of	Ockham’s	razor	do	not	apply	
to	such	inferences	(J.	Pearl).			

•  Our	account	does.			
	
	
	
	

Applica(on:	Science	



How	much	prior	bias	toward	simple	models	is	necessary	
to	avoid	α-cycles?			
	
		
	
	
	
	
	
	

A	New	Objec(ve	Bayesianism?	



1.   Develop	basic	methodological	ideas	in	topology.	
2.   Port	them	to	sta&s&cs	via	the	sta&s&cal	informa&on	

topology.	
	
	
	
	
	
	

A	Method	for	Methodology	



1.  Informa(on	topology	is	the	structure	of	the	scien(st’s	
problem	context.	

2.  The	apparent	analogy	between	sta(s(cal	and	ideal	
verifiability	reflects	shared	topological	structure.	

3.  Indeed,	one	can	think	of	basis	elements	as	
proposi&onal	sta&s&cal	informa&on	from	which	
sta(s(cal	conclusions	can	be	literally	deduced.			

4.  Thereby,	ideal	logical/topological	ideas	can	be	ported	
in	a	direct	and	uniform	fashion	to	sta(s(cs.	

Some	Concluding	Remarks	


