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The Randomized, Controlled Trial (RCT)
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Introduction to Randomized

“The RCT is the introduction of scientific method S
into the process of comparing treatments”




The Randomized, Controlled Trial (RCT)

Attempts to discover the relative effectiveness of a new intervention over standard
treatment or placebo. Patients are assigned to the different “arms” of the trial by a
randomization device.

e \Widely considered the “gold standard” research design;
e Typically necessary for FDA approval;

e Raises a number of tricky ethical issues.
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A Proliferation of ML methods for Causal Discovery

Bandit solutions provide unified ethical models for
randomized clinical trials and comparative

effectiveness research

William H. Press’

Department of Computer Science and School of Biological Sciences, University of Texas, Austin, TX 78712

Contributed by William H. Press, October 27, 2009 (sent for review September 29, 2009)

As electronic medical records enable increasingly ambitious studies
of treatment outcomes, ethical issues previously important only to
limited clinical trials become relevant to unlimited whole popula-

better-grounded alf ives to dard experimental designs,
such as equal allocations to experimental and control thera-
pies (8-13). In response-adapme mals, partial data inform not
just “ it-by arl, but also affect,

tions. For randomized clinical trials, ad:
are known to expose substantially fewer patients to avoidable
treatment failures than with fixed (e.g.,
equal sample slzes) An ideall dapti the tv d
bl be exactly op for a variety of
ethically motlv:ted cost functions that embody principles of duty-
to-patient, but the solutions have been thought computationally
infeasible when the numbers of patients in the study (the “hori-
zon") is large. We report numerical experiments that yield a heuris-
tic approximation that applies even to very large horizons, and we
propose a near-optimal strategy that remains valid even when the
horizon is or thus to
effectiveness studies on large or to f-
recommendations. For the case in which the economic cost of treat-
ment is a parameter, we give a heuristic, near-optimal strategy for
the superior more or less costly)
while minimizing resources wasted on any inferior, more expen-
sive, treatment. Key features of our heuristics can be generalized
to more complicated protocols.

evidence-based medicine | multiarmed bandit | statistical sampling |
Bernoulli process | outcomes research

Ithough randomized clinical trials are the gold standard
for establishing the effectiveness of medical treatments,

by defined statistical pmlo’:;ols such things as the assignment of
patients to treatments, dosages, and so forth.

In this paper, we take as an idealized model the Bernoulli-
outcome two-armed bandit problem. Multiarmed bandit prob-
lems, named after a metaphorical image of a slot machine with
multiple handles, have been known for many decades (14-17).
Bandit problems exemplify the tradeoff between the cost of
gathering information and the beneﬁl of exploiting information
already gathered—the lled versus expl ion
dllcmma

In the example used in this paper, there are two treatments, A
and B, which have respective (unknown) success probabilities a
andbwith0 <a < 1and 0 < b < L In a clinical trial, patients
are assigned in turn to one or the other treatment. The Bernoulli-
valued outcomes for all previous patients, success or failure, are
assumed to be known as each assigr is made. The
are how best make the asslgnmcnls and, as the central issue for
this paper, what should “best” mean in a context involving both
ethical responsibilities and the limit M —» o0? Generalizations of
this idealized model to more realistic cases (e.g., where the out-
comes are not immediately known) and to cases where the cost of
treatment is also a relevant variable, are discussed in Numerical
Experiments and Heuristics and Discussion.

Methods
State Variables. At anv point in time. under the model assump-
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Rethinking the Gold Standard
With Multi-armed Bandits:
Machine Learning Allocation
Algorithms for Experiments

Chris Kaibel'® and Torsten Biemann'

Abstract

In experiments, researchers commonly allocate subjects randomly and equally to the different
treatment conditions before the experiment starts. While this approach is intuitive, it means that
new information gathered during the experiment is not utilized until after the experiment has ended.
Based on methodological approaches from other ific disciplines such as p science and
medicine, we suggest machine learning algorithms for subject allocation in experiments. Specifically,
we discuss a Bayesian multi-armed bandit algorithm for randomized controlled trials and use Monte
Carlo simulations to compare its efficiency with randomized controlled trials that have a fixed and
balanced subject allocation. Our findings indicate that a randomized all based on Bay
multi-armed bandits is more efficient and ethical in most settings. We develop recommendations for
researchers and discuss the limitations of our approach.

Keywords
experiments, randomized controlled trial, multi-armed bandit, exploration versus exploitation,
machine learning, ethics in research




Between Morals and Methodology

If the ethical costs of RCTs are justified, it must be in virtue of the epistemic
superiority of the randomized, controlled design.

e Exactly what is the epistemic good which RCTs secure?

e (Can these goods not be secured with some other methodology? Preferably
without the same ethical costs?



An Early Controlled Trial

1747: James Lind, surgeon aboard the HMS
Salisbury treats 12 sailors, receiving the same
rations, suffering from scurvy.

2 with cider; 2 with seawater; 2 with horseradish;

2 with vinegar; 2 with sulfuric acid

and 2 with lemons and oranges.



The First Randomized Controlled Trial

1948: A. Bradford Hill, facing a shortage of streptomycin, runs
the first randomly allocated trial of streptomycin for tuberculosis. §

1965: Bradford Hill proposed a set of nine criteria for
epidemiological evidence of a causal relationship. Henceforth
widely known as the Bradford Hill criteria.




Early Randomizers

1935: Fisher’s publishes The Design of Experiments.
1925: Fisher publishes Statistical Methods for Research Workers.
1921: Fisher publishes Studies in Crop Variation.

1883: C.S. Peirce and Jastrow perform randomized experiments
in psychophysics.

1780: Charles Deslon proposes a randomized trial to test
Mesmer’s claims.



The Trouble with Randomization

Randomization comes into prima facie conflict with therapeutic obligation:

“A physician should not recommend for a patient therapy such that, given present
medical knowledge, the hypothesis that the particular therapy is inferior to some
other therapy is more probable than the opposite hypothesis” (Marquis, 1983).



The Trouble with Randomization

Randomization comes into prima facie conflict with individualized treatment:

“Although a patient who has been enrolled as a research subject in a RCT may
benefit from the therapeutic effects of the treatment being tested, the fact that the
treatment cannot be entirely tailored to that patient’s special needs seems to
violate the physician’s obligation of unqualified fidelity to his patient’s health”
(Schafer, 1983).



Clinical Equipoise

Since theoretical equipoise is very fragile, Freedman proposes clinical equipoise
instead, which obtains when

“[tIhere exists (or, ... may soon exit) an honest, professional disagreement among
expert clinicians about the preferred treatment” (1987, 144).



The Tragic View of Clinical Research

The discussion around clinical equipoise presupposes

e There is some valuable epistemic good secured by randomization;

e Any trial methodology which secures this good must inevitably come into
conflict with the requirements of individual treatment.



The Tragic View of Clinical Research

The job of clinical ethics is to reconcile clinicians to this tragic situation:

“These clinical instincts, while understandable and laudable, have the potential to
obscure the true nature of clinical research, as investigators and participants alike
try to convince themselves that clinical research involves nothing more than the
provision of clinical care. One way to try to address this collective and often willful
confusion would be to identify a justification for exposing research participants to
net risks for the benefit of others.” (Wendler, 2021).



The Tragic View of Clinical Research

The job of clinical ethics is to reconcile clinicians to this tragic situation:

“These clinical instincts, while understandable and laudable, have the potential to
obscure the true nature of clinical research, as investigators and participants alike
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David S. Wendler, M.A,,
Ph.D.

Senior Investigator
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The Tragic View of Clinical Research

But is the tragic view right?

e \What is the valuable epistemic good secured by randomization?

e |s there really no methodology that reconciles this good with the ethical
requirements of individualized treatment?



Critics of Randomization

Randomization has come in for criticism on purely epistemic grounds.

e Bayesians have a hard time rationally reconstructing randomization
(Savage 1961,1962; Kadane & Seidenfeld, 1999; Kasy 2016).

e The theory of optimal design does not endorse randomization
(Kiefer 1959; Harville 1975).

e Philosophers of science have criticized the coherence of randomization
(Urbach 1985; Worrall 2002).



Randomization On its Own Terms

What is the best frequentist justification for randomization?



The Causal Situation

T .= treatment (binary);

E := effect (binary); I
M := measured covariates:

U := unmeasured covariates;

| := randomizer.




Average Treatment Effect

The goal is to estimate the
average treatment effect (ATE):

P(E = 1|do(T = 1)) — P(E = 1|do(T = 0))

Or, in the notation of the potential outcomes framework:

%Z P(EFt=1) - P(EFFY = 1)

)
1<n



Trouble with Observational Studies

If there is an unobserved common cause of T, E
it is easy to come up with examples in which the ATE
is not identified.
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Trouble with Observational Studies
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The Point of Randomization

Randomization “breaks edges” into treatment, so that
any association between T and E is due to the causal
effect of T on E and not shared common causes. \

T




The Point of Randomization

It ensures that the ATE is identified and equal to

7 7 /
P(E = 1T =1)— P(E = 1T = 0) ~

Moreover an unbiased estimate of the ATE is easily
obtained.
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The Point of Randomization

“In ideal randomized experiments, association is /

causation” ~




No Other Way?

But is breaking edges into T the only way to render
the ATE identified and construct unbiased estimates?

/




No Other Way?

But is breaking edges into T the only way to render
the ATE identified and construct unbiased estimates?

No!

/




Instrumental Variables

| is an instrumental variable if (roughly)

e |is statistically independent of U,M;

e the only unblocked path from / to E goes
through T

(a path is blocked if it contains a sequence like




Instrumental Variables

Suppose that

e physicians assign patients to treatment
according to their therapeutic judgement

e and only consult a randomizing device ( /)
when they are in equipoise

then / is an instrumental variable.




Instrumental Variables

Theorem (Angrist and Imbens 1995): When an
instrumental variable satisfies a “monotonicity”
condition, then the ATE is identified and there is an
unbiased estimator of the ATE.




Instrumental Variables

Theorem (Angrist and Imbens 1995): When an
instrumental variable satisfies a “monotonicity”
condition, then the ATE is identified and there is an
unbiased estimator of the ATE.




Backdoor Adjustment

M satisfied the backdoor criterion w.r.t (7, E) if

e M is not a descendant of T;

e M Dblocks every path between T and E that has
an arrow into T.



Backdoor Adjustment

Theorem (Pearl, 1993) If there is observed variable
Z satisfying the backdoor criterion wrt (7, E), then it
is possible to construct an unbiased estimate of the
causal effect of T on E.




Backdoor Adjustment

Suppose that

e physicians make assignment to treatment only
on the basis of observed covariates M,

then M satisfies the backdoor criterion wrt (7, E).

AA
“—’/




Backdoor Adjustment

Suppose that

e physicians make assignment to treatment only
on the basis of observed covariates M,

then M satisfies the backdoor criterion wrt (7, E).

AA
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Cut-off Designs

Clinicians rate patients on a continuous scale
according to disease severity then

e assign low/high severity patients to less/more
aggressive treatment, respectively;

e Randomize patients with moderate severity.

Estimate the ATE by ridge regression.

(See Cappelleri, 1995).




Cut-off Designs

Senn (2008) criticizes this design on grounds of
efficiency.

------ 2,75

ooo Cut-off design

Variance

1 1 ! !
0 0.2 0.4 0.6 0.8
Proportion randomized




Randomization On its Own Terms

Neither guaranteeing that

1. the ATE is identified, nor that
2. there exists an unbiased estimator of the ATE,

is sufficient to justify randomization.

Other designs get the same goods and are less hostile to individualized treatment.



Randomization On its Own Terms

If there is a frequentists argument justifying randomization over other methods, it
cannot be framed in terms of identification or unbiased estimation.

It must be about efficiency.

|.e. the variance of the estimator.



Randomization On its Own Terms

Are there such arguments?



Minimax Justifications

A series of somewhat neglected papers (Wu 1981; Li 1983; Waite and Woods
2020) develops a minimax risk argument for randomization.

The Annals of Statisticx
1981, Vol 9, No. 6, 1168-1177

ON THE ROBUSTNESS AND EFFICIENCY OF SOME
RANDOMIZED DESIGNS'

By Cuien-Fu Wu
University of Wisconsin-Madison

A concept of model-robustness is defined in terms of the performance of
the design in the presence of model vwlut:ons The robustness problem is
di d for several used in
tal design situations. Among Lhem the balanced completely randomized
design, the randomized complete block design and the randomized Latin
square design are shown to be model-robust in their own settings. T'o compare
different randomization procedures, we define a concept of efficiency which
depends on the particular “pattern” of model violations. This concept, when
applied to different designs, gives results which are consistent with the
intuitive grounds on which the designs are suggested.

1. Introduction. E: i tal rand is one of the greatest contributions of
R. A. Fisher to science and statistics. Among the most popular of the arguments favoring
the use of randomization are the following: It provides a solid basis for statistical inference;

it ensures impartiality; it is a source of robustness against model inadequacies. The first

has been di: d very ively in the li (Cox, 1958; Harville, 1975;
Kempthorne, 1955, 1975 and references therein). The main contention is that the necessary
ptions for the rand ion models are much less restrictive than for the ordinary

normal-theory models. The second argument contends that the use of randomization
ensures that the choice of design is not affected by any bias or preconceived notion on the
part of the experimenter (Cox, 1958; Harville, 1975). Both arguments seem to be well

The Annals of Statistics
1983, Vol 11, No. 1, 25-230

MINIMAXITY FOR RANDOMIZED DESIGNS:
SOME GENERAL RESULTS*

By KER-CHAU L1
Purdue University

In many design settings where model vlohuonz are preaent a “stochastic™
minimaxity for many standard is
This result requires no special analytic properties of the loss function and
estimators. Next, under the squared loss and with the restriction to the use of
linear estimators, a recipe for finding a randomized strategy is given. As a
special case, randomizing an A-optimal design in the standard manner and
using the least squares estimates yields a minimax strategy in most cases.
These results generalize some aspects of Wu (1981).

L lnh‘oduction The role of randomization in the desugn of experiments has been

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2021, AHEAD-OF-PRINT, 1-14
hitps:/idoi.org/10.1080/01621459.2020.1863221

Taylor & Francis
Taylor & Francis Group

0

Minimax Efficient Random Experimental Design Strategies With
Application to Model-Robust Design for Prediction

Timothy W. Waite2 and David C. Woods®

2 Department of University of UK; © Statistical Sciences Research Institute,

University of Southampton, Southampton, UK

papers (see the refée given in Wu, 1981). Asit was ized
by Wu, the most popular of the nrgumentz favormg the use of mndomluuon are the
following: it provides a solid basis for i fe

it ensures imp: ity; it is a

source of robustness against model inads ies. Most of the lif has been add: d
to the first and the second arguments.

While the third argument on the model rob aspect of randomization has already

been well accepted, Wu (1981) seems to be the first work devoted to giving it a formal

ition and rigorous justi ion. For some basic design setups in comparative experi-

ments where T'treatments are to be assigned to N experiment units, Wu argued that since

the experimenter’s information about the model is never perfect, there is always the

possibility that the “true” model deviates from the assumed model. Thus if G is the

collection of all possible “true” models, he defined the concept of model-robustness with

in terms of mmlmmng the manmum posslble mean squared error of the
: PR

In game theory and statistical decision theory, a random (i.e., mixed) decision strategy often outperforms a
deterministic strategy in minimax expected loss. As experimental design can be viewed as a game pitting the
Statistician against Nature, the use of a random strategy to choose a design will often be beneficial. However, the
topic of minimax-efficient random strategies for design selec\mn is mostly unexplored, wnh consideration limited

to Fisherian randomization of the allocation of a set of to units. Here, for
the ﬁrsl nme. novel and more flexible random desngn strategies are shown to have better properties than their
in linear model and prediction, including stronger bounds on both the

expectation and survivor function of the loss distribution. Design strategies are considered for three important
statistical problems: (i) parameter estimation in linear potential outcomes models, (ii) point prediction from a
correct linear model, and (ii) global prediction from a linear model taking into account an Ly-class of possible
model discrepancy functions. The new random design strategies proposed for (iil) give a finite bound on the
expected loss, a dramatic improvement compared to existing deterministic exact designs for which the expected
loss is unbounded. Supplementary materials for this article are available online.



Minimax Justifications

Suppose that for each patient, the effect of treatment is given by:

Fiy = o + g + €ue

effect of treatment ¢t on patient / fixed effect of treatment ¢ patient effect Independent mean-zero noise



Minimax Justifications

Let g =(9,, 9, ---, g) be an assignment of patient effects to individuals.
Let G be the set of all assignments consistent with background knowledge.

Symmetry assumption: if g is in G, then so is every permutation of g.



Minimax Justifications

Theorem (Wu, 1981) The fully randomized design minimizes the maximum MSE
of the estimate of the o, over all possible values of G.

So the fully randomized design has the best worst-case efficiency.



Research Questions

Can these minimax arguments be generalized away from the linearity
assumptions?



Generalized Minimax Justifications

Can these minimax arguments be generalized away from the linearity

assumptions?

Yes, to some extent.

Why Randomize? Minimax Optimality under
Permutation Invariance

20 Pages . Posted:4 Nov 2019 . Last revised: 4 Feb 2021

Yuehao Bai
University of Michigan at Ann Arbor - Department of Economics

Date Written: October 25, 2020

Abstract

This paper studies finite sample minimax optimal randomization schemes and estimation schemes in
estimating parameters including the average treat- ment effect, when treatment effects are heterogeneous. A
randomization scheme is a distribution over a group of permutations of a given treatment assignment vector.
An estimation scheme is a joint distribution over assignment vectors, linear estimators, and permutations of
assignment vectors. The key element in the minimax problem is that the worst case is over a class of
distributions of the data which is invariant to a group of permutations. First, | show that given any
assignment vector and any estimator, the uniform distribution over the same group of permutations, namely
the complete randomization scheme, is minimax optimal. Second, under further assumptions on the class of
distributions and the objective function, | show the minimax optimal estimation scheme involves completely
randomizing an assignment vector, while the optimal estimator is the difference-in-means under complete
invariance and a weighted average of within-block differences under a block structure, and the numbers of
treated and untreated units are determined by Neyman allocations.



Generalized Minimax Justifications

Can these minimax arguments be generalized away from the linearity

assumptions?

Yes, to some extent.

But the nature of this justification
is very different from that suggested
by the tragic view!

Why Randomize? Minimax Optimality under
Permutation Invariance
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the complete randomization scheme, is minimax optimal. Second, under further assumptions on the class of
distributions and the objective function, | show the minimax optimal estimation scheme involves completely
randomizing an assignment vector, while the optimal estimator is the difference-in-means under complete
invariance and a weighted average of within-block differences under a block structure, and the numbers of
treated and untreated units are determined by Neyman allocations.



Generalized Minimax Justifications

1. Suppose that you have M groups of patients. Within the groups the patients
are clinically indistinguishable.

2. Suppose that for each group you are required to test the new treatment on
exactly n. patients in group 1.

3. Then, uniformly randomizing the assignment is minimax optimal.
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But this is not in conflict with therapeutic obligation!
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4. The optimal n.depend on worst-case outcome variances in the group.



Generalized Minimax Justifications

1. Suppose that you have M groups of patients. Within the groups the patients
are clinically indistinguishable.

2. Suppose that for each group you are required to test the new treatment on
exactly n. patients in group 1.

3. Then, uniformly randomizing the assignment is minimax optimal.

4. The optimal n.depend on worst-case outcome variances in the group.

But this is also not in conflict with therapeutic obligation!



Research Questions

What is the precise tradeoff between individualized treatment and worst-case
efficiency of the estimator?

e.g. If we want X% of patients to get individualized treatment, how many more
trial participants ( N’) would we need to achieve the same efficiency as a fully
randomized RCT with N?

What is more important: giving (most) participants individualized treatment, or
getting informative results with fewer participants?



Research Questions

What is the precise tradeoff between individualized treatment and worst-case
efficiency of the estimator?

If we want X% of patients to get individualized treatment, how many more trial
participants ( N') would we need to recruit in order to achieve the same efficiency
as a fully randomized RCT with N patients?



Research Questions

What is the precise tradeoff between individualized treatment and worst-case
efficiency of the estimator?

What is more important: giving (most) participants individualized treatment, or
getting informative results with fewer participants?



Takeaway

If individualized treatment and estimation efficiency trade off, we should be able to
say something quantitative about the nature of the trade-off.

The existence of some trade-off does not justify abandoning all therapeutic
obligations.



