Success Concepts for Causal Discovery

Konstantin Genin

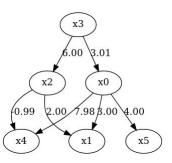
Group Leader: "Epistemology and Ethics of ML" Cluster of Excellence: "Machine Learning for Science"

Joint Work

with **Conor Mayo-Wilson** Department of Philosophy University of Washington

The LiNGAM Model

Theorem (Shimizu et al., 2006). When



- 1. noise terms are **independent** and **non-**Gaussian,
- 2. functional relationships are **linear** and **a-cyclic** and
- 3. there are no unobserved confounders,

it is possible to converge (pointwise) to the **DAG** generating the data.

Shimizu, Shohei, Patrik O. Hoyer, Aapo Hyvärinen, Aapo, and Antti Kerminen. "A Linear Non-Gaussian Acyclic Model for Causal Discovery." *Journal of Machine Learning Research* 7, no. 72 (2006): 2003–30.

The Linear Gaussian Model

Theorem (Spirtes et al., 2001). When

- 1. noise terms are independent and Gaussian,
- 2. functional relationships are **linear** and **a-cyclic** and
- 3. there are no unobserved confounders,

it is possible to converge (pointwise) to the **Markov equivalence class** of the DAG generating the data.

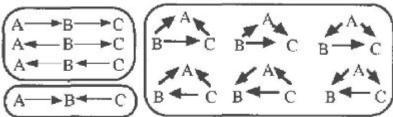
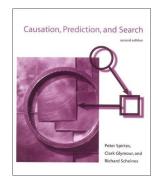


Figure 2: Three Acyclic Markov Equivalence Classes



LiNGAM + Confounding - Unfaithfulness

Theorem (Salehkaleybar et al., 2020). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are linear and a-cyclic,
- 3. there may be unobserved confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables are identified.

Salehkaleybar, Saber, et al. (2020) "Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables." *Journal of Machine Learning Research* 21.39: 1-24.

Hoyer, Patrik O., et al. (2008) "Estimation of causal effects using linear non-Gaussian causal models with hidden variables." *International Journal of Approximate Reasoning* 49.2: 362-378.

Pitfalls of Pointwise

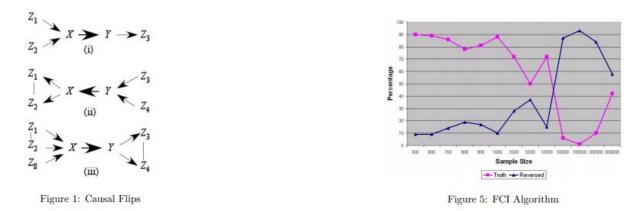
But identifiability does not imply the existence of discovery algorithms.

Pitfalls of Pointwise

Moreover, **pointwise convergence** is compatible with all kinds of short run behavior.

Pitfalls of Pointwise

If noise is Gaussian, causal conclusion can **flip** arbitrarily often as data accumulate.



Kelly, Kevin T, and Conor Mayo-Wilson (2010). "Causal Conclusions That Flip Repeatedly and Their Justification," Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI 2010). <u>https://arxiv.org/abs/1203.3488v1</u>

Uniform Convergence is Impossible

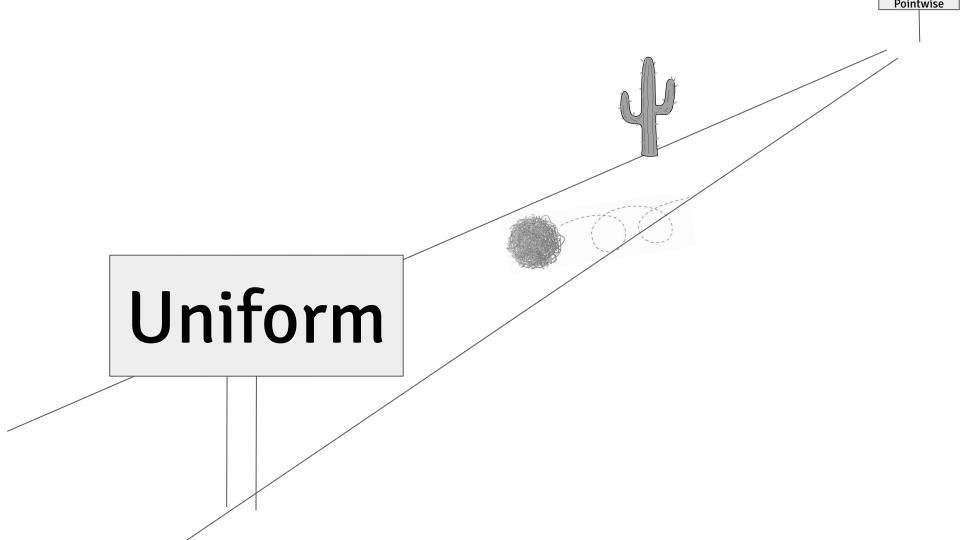
But **uniform** convergence to the true DAG is provably **impossible** in the LiNGAM framework.

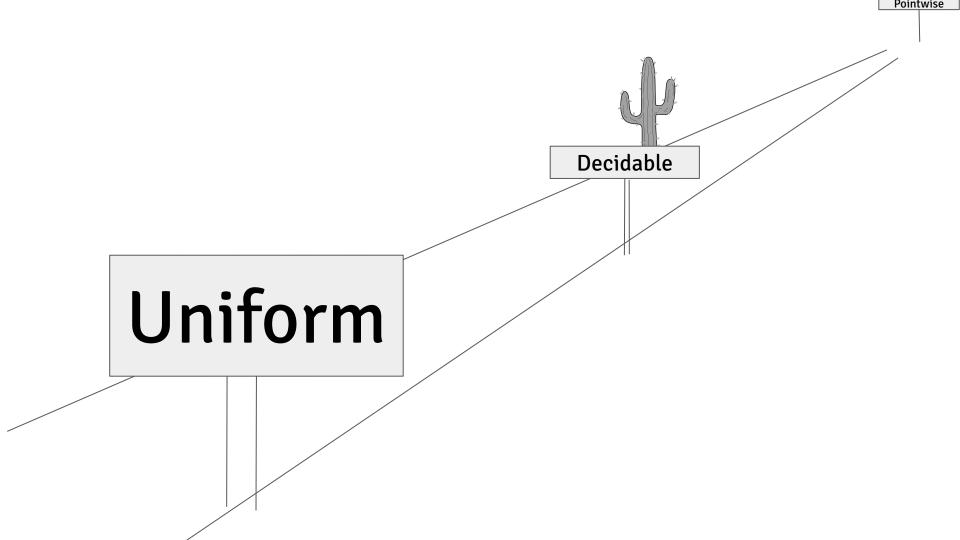
Uniform Convergence is Impossible

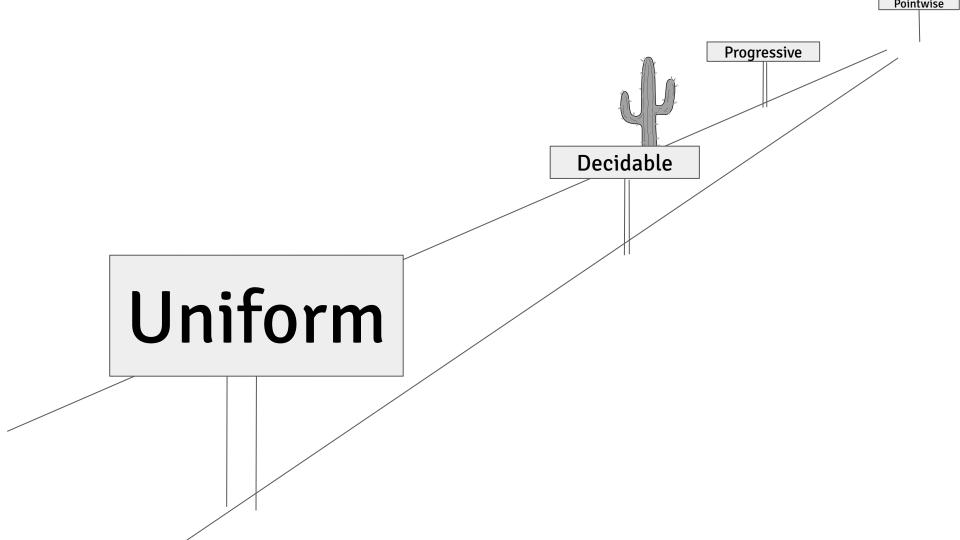
But **uniform** convergence to the true DAG is provably **impossible** in the LiNGAM framework.

And assumptions strong enough make uniform convergence feasible are not plausible.

Uhler, Caroline, et al. "Geometry of the faithfulness assumption in causal inference." *The Annals of Statistics* (2013): 436-463.







To Do

- 1. Define the success concepts.
- 2. Provide (topological) criteria for achieving the success concepts.
- 3. Apply to the case of LiNGAM with and without confounders.
- 4. Introduce a LiNGAM variant: the "Flamingo".

Roughly: qualitative geometry that abstracts from metrical concepts in favor of qualitative notions of **separation** or **arbitrary** closeness.

Often: the study of geometric properties preserved by stretching but not "cutting" and "gluing"

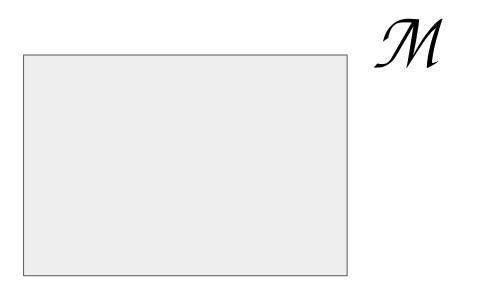
- A point *w* is a **limit point** of a region *A* if there are points in *A* getting arbitrarily close to *w*.
- Two regions *A* and *B* are well separated if neither contains limit points of the other.
- "Cutting" separates regions that weren't separated and "gluing" creates limit points that weren't there before.

• The **topological closure** of *A*, written cl(*A*), is the result of adding all of the limit points of *A* to *A*.

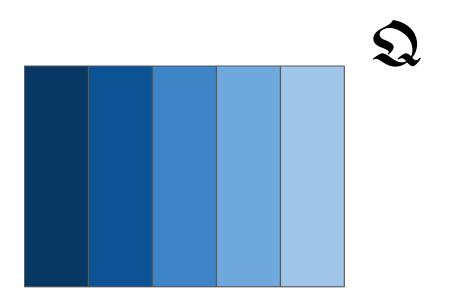
Why does topology matter?

Qualitative relations of separation are important for understanding how "well resolved" possibilities are by data and, therefore, how hard causal discovery problems really are.

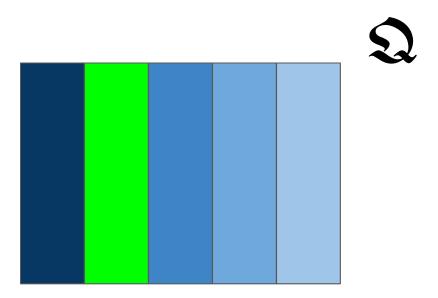
Let \mathcal{M} be a set of causal models, each a potential data-generating mechanism.



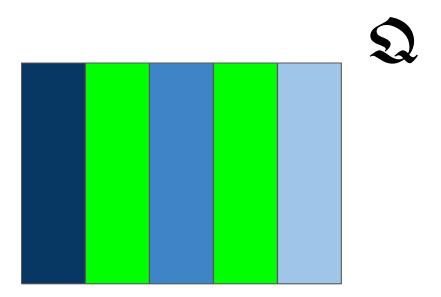
A question \mathfrak{Q} , partitioning \mathcal{M} into a countable set of **answers**.



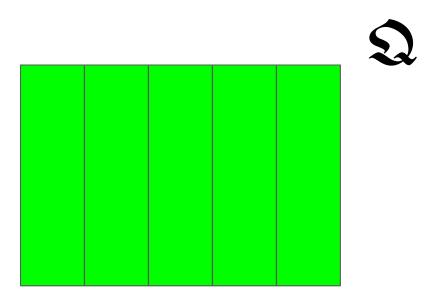
A relevant response is a union of answers.



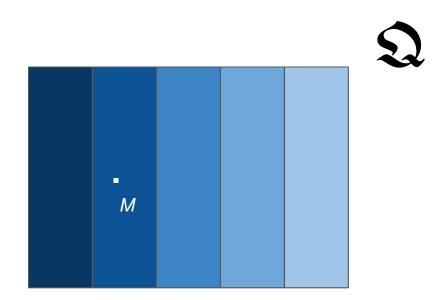
A relevant response is a union of answers.



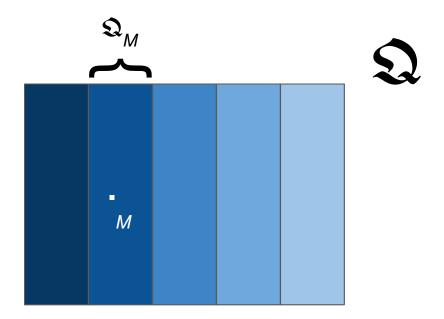
A relevant response is a union of answers.



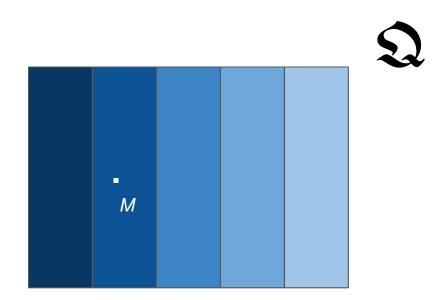
If $M \in \mathcal{M}$,



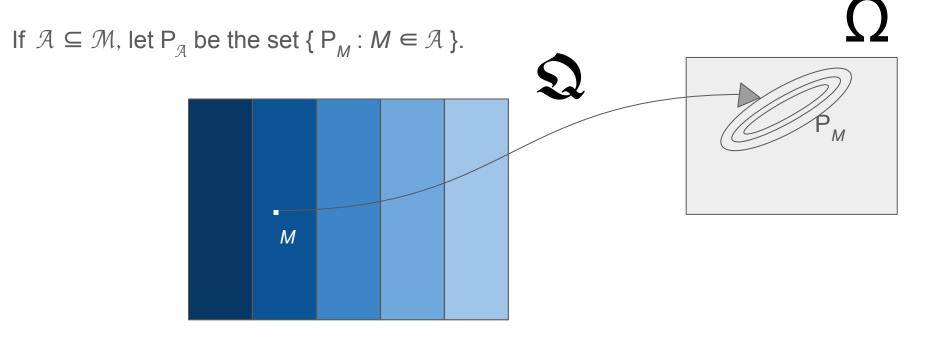
If $M \in \mathcal{M}$, let \mathfrak{Q}_M be the answer true in M.

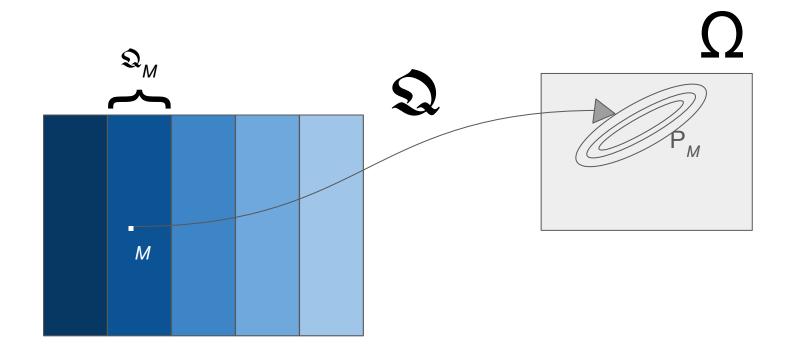


If $M \in \mathcal{M}$,



If $M \in \mathcal{M}$, let P_M be the distribution induced by M over observables.





Weak Topology

- The distributions P_n converge in the weak topology to P if for all "nice" events A, $P_n(A) \rightarrow P(A)$.
- A is nice if $P(\partial A) = 0$.
- Convergence in the weak topology is equivalent to convergence in distribution.

Statistical Methods

A set of measurable functions (T_n) is a **method** if each one is a function from samples of size *n* to **relevant responses** (unions of answers).

Note: a method can **suspend judgment** by outputting UQ.

Uniform Decidability

A method (T_n) uniformly decides \mathfrak{Q} iff for all $\epsilon > 0$ there is a sample size n such that for all $M \in \mathcal{M}$ and

• $P_M(T_m = \mathfrak{Q}_M) > 1 - \varepsilon$ for all $m \ge n$.

Topological Criterion for Uniform Decidability

Theorem.

A question is uniformly decidable only if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

• $cl(P_{\mathcal{A}})$ is disjoint from $cl(P_{\mathcal{B}})$.

Decidability in the Limit

A method (T_n) decides \mathfrak{A} in the limit iff for all $M \in \mathcal{M}$,

•
$$P_M(T_n = \mathfrak{Q}_M) \longrightarrow 1 \text{ as } n \longrightarrow \infty.$$

Decidability in the Limit

A method (T_n) decides \mathfrak{A} in the limit iff for all $M \in \mathcal{M}$,

•
$$P_M(T_n = \mathfrak{Q}_M) \longrightarrow 1 \text{ as } n \longrightarrow \infty.$$

A question \mathfrak{Q} is **decidable in the limit** if some method decides it in the limit.

Topological Criterion for Limiting Decidability

Theorem. (Dembo & Peres, 1994)

A question is decidable in the limit if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

- $P_{\mathcal{A}}$ is disjoint from $P_{\mathcal{B}}$;
- P_{A} is a countable union of closed sets in the weak topology.

Dembo, Amir, and Yuval Peres (1994). "A Topological Criterion for Hypothesis Testing." *Annals of Statistics* 22(1): 106–17. https://doi.org/10.1214/aos/1176325360.

Decidability

A method (T_n) is an **\alpha-decision procedure** for \mathfrak{Q} iff it decides \mathfrak{Q} in the limit and

• for all sample sizes n, $P_M(\mathfrak{A}_M \subseteq T_n) < \alpha$.

A question \mathfrak{Q} is statistically **decidable** iff it has an α -decision procedure for all $\alpha > 0$.

Decidability

A method (T_n) is an **\alpha-decision procedure** for \mathfrak{Q} iff it decides \mathfrak{Q} in the limit and

• for all sample sizes n, $P_M(\mathfrak{A}_M \subseteq T_n) < \alpha$.

A question \mathfrak{Q} is statistically **decidable** iff it has an α -decision procedure for all $\alpha > 0$.

Note: It may be that $P_M(T_n = U\mathfrak{Q}) \approx 1$ for arbitrarily large *n*.

Topological Criterion for Decidability

Theorem. (Genin & Kelly, 2017)

A question is decidable if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

 $P_{\mathcal{A}}$ is disjoint from the (weak topology) closure of $P_{\mathcal{B}}$.

Genin, Konstantin, and Kevin T. Kelly. (2017) "The Topology of Statistical Verifiability." *Electronic Proceedings in Theoretical Computer Science* 251: 236–50. <u>https://doi.org/10.4204/EPTCS.251.17</u>.

Three Varieties of Decidability

	Output probably correct at every sample size.	Output probably informative after known sample size.	Output probably correct & informative after some (potentially unknown) sample size.
Uniformly Decidable			
Decidable		*	
Decidable in the Limit	*	*	

Three Varieties of Decidability

	Output probably correct at every sample size.	Output probably informative after known sample size.	Output probably correct & informative after some (potentially unknown) sample size.
Uniformly Decidable			
Decidable		*	
Decidable in the Limit	*	*	

Progressive Solvability

A method (T_n) is an α -progressive solution for \mathfrak{A} iff for all $M \in \mathcal{M}$,

• (T_n) decides \mathfrak{Q} in the limit;

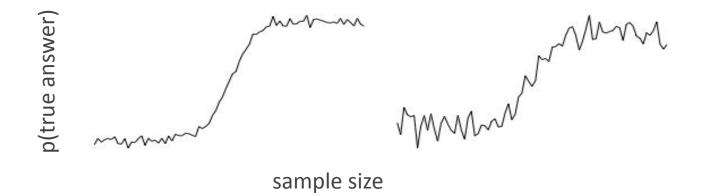
•
$$P_M(T_{n2} = \mathfrak{A}_M) + \alpha > P_M(T_{n1} = \mathfrak{A}_M)$$
 for $n_2 > n_1$.

A question \mathfrak{Q} is **progressively solvable** if it has an α -progressive solution for every $\alpha > 0$.

Progressive Methods

A method for answering a scientific question is α -progressive iff

• the **chance** that it outputs the **true** answer **never drops** by more than α.



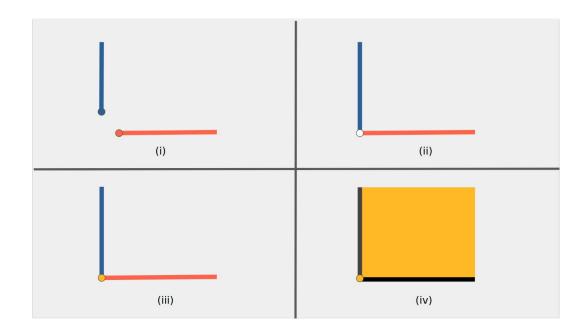
Topological Criterion for Progressive Solvability

Theorem. (Genin, 2018)

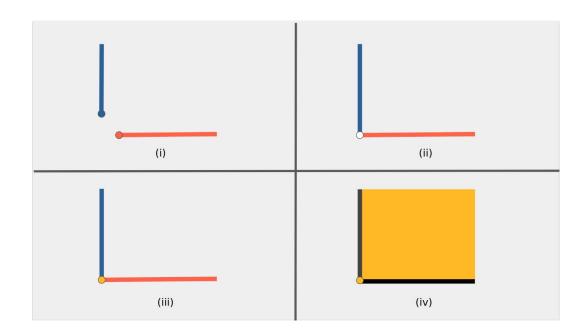
A question is progressively solvable if there exists an enumeration $\mathcal{A}_1, \mathcal{A}_2, ...$ of the answers to \mathfrak{A} s.t. $\mathcal{A}_1 \cap cl(\mathcal{A}_1) = \emptyset$ for i < j.

Genin, Konstantin, and Kevin T. Kelly. (2017) "The Topology of Statistical Verifiability." *Electronic Proceedings in Theoretical Computer Science* 251: 236–50. <u>https://doi.org/10.4204/EPTCS.251.17</u>.

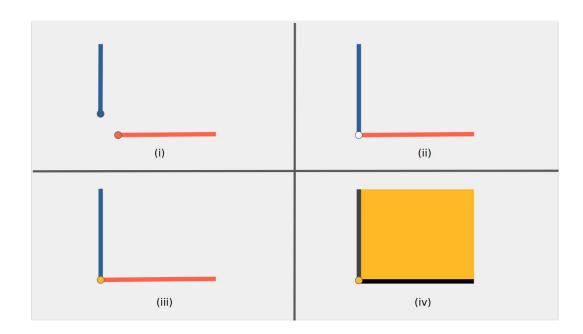
Suppose we are interested in the (absolute) bias of two coins, one **red** and one **blue**.



(i) background knowledge determines that **exactly** 1 coin is biased and there is a non-zero lower bound on the degree of bias, if any.



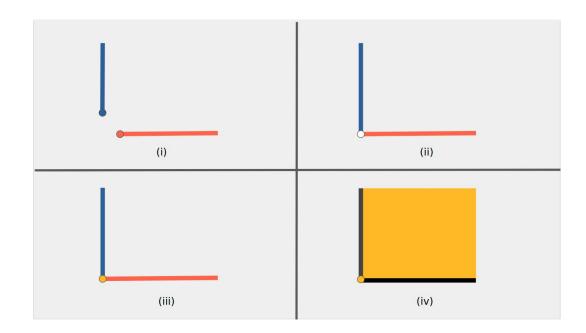
This is fortunate situation in which there exists a uniform procedure deciding between the **red** and **blue** hypotheses.



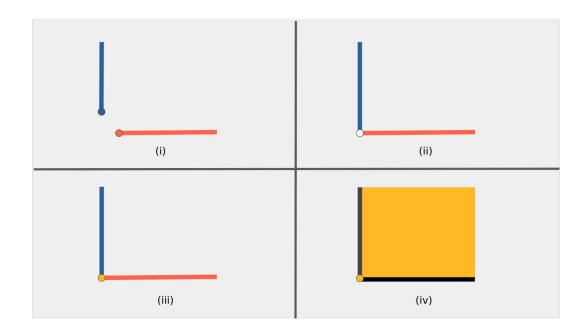
(i) $cl(blue) \cap cl(red) = \emptyset$.



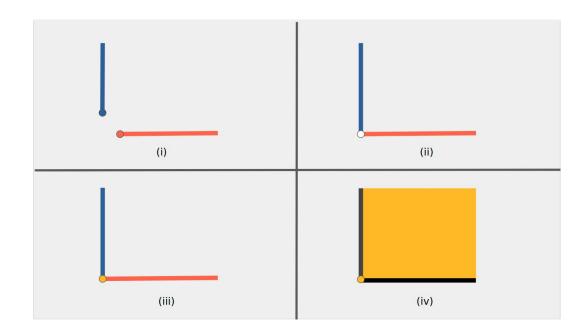
(ii) background knowledge determines that exactly 1 coin is biased but the bias can be **arbitrarily close** to zero.



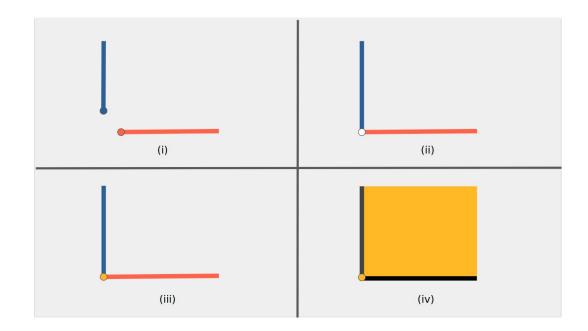
Uniform decision procedures no longer exist.



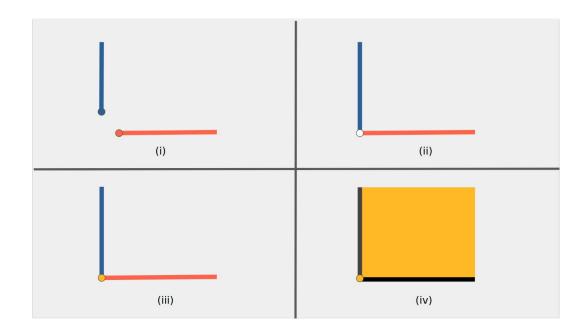
But a decision procedure does exist: suspend judgement until a confidence interval rules out either **red** or **blue**.



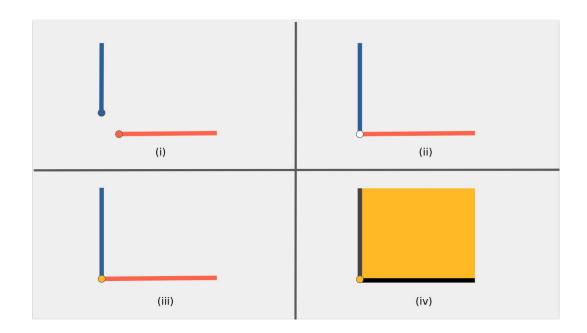
(ii) $cl(blue) \cap red = \emptyset$ and $cl(red) \cap blue = \emptyset$.



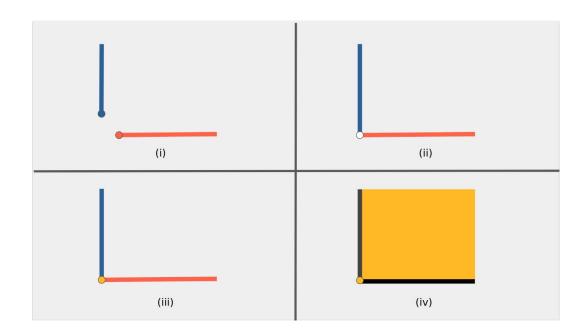
(iii) background knowledge determines that **at most** 1 coin is biased and the bias can be arbitrarily close to zero.



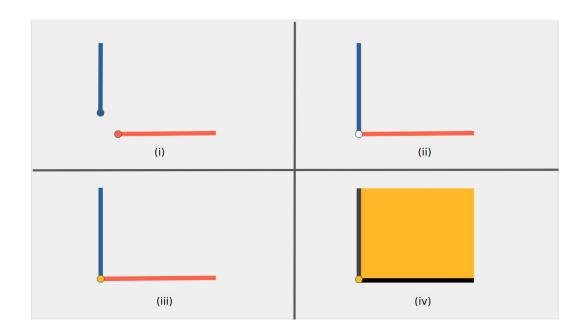
This problem is no longer decidable.



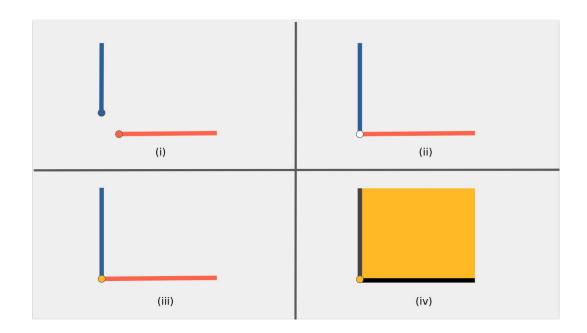
If we want to converge to the right answer in the **yellow** possibility, we must open ourselves to error in nearby **blue** and **red** possibilities.



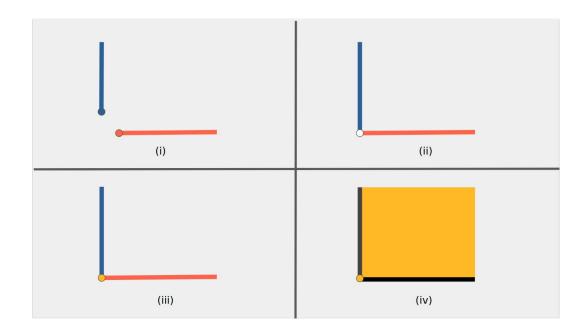
However, it is **progressively** solvable: conjecture **yellow** until it is inconsistent with the confidence interval.



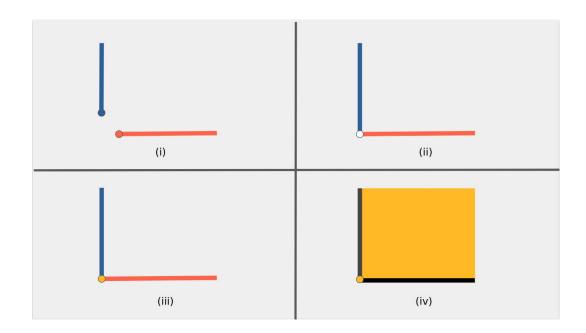
(iii) yellow, blue, red is a suitable enumeration: blue \cap cl(yellow)= Ø and red \cap cl(blue U yellow)= Ø.



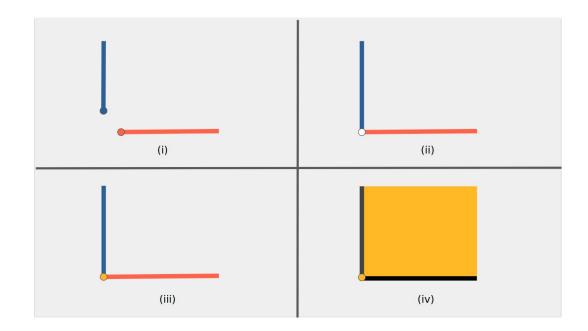
(iv) Any combination of biases is possible. Question: are an even or **odd** number of coins biased?



Not even progressively solvable.



(iv) black \cap cl(yellow) $\neq \emptyset$ and yellow \cap cl(black) $\neq \emptyset$.



The LiNGAM Model

Theorem (Genin and Mayo-Wilson, 2020). If

- A. noise terms are independent and non-Gaussian,
- B. functional relationships are **linear** and **a-cyclic** and
- C. there are no unobserved confounders, then

then

- 1. $\mathfrak{Q} = {\mathcal{M}^{i \to j}, \mathcal{M}^{i \leftarrow j}}$ is decidable, but not uniformly decidable;
- 2. $\mathfrak{Q} = {\mathcal{M}^{ioj}, \mathcal{M}^{i \to j}, \mathcal{M}^{i \leftarrow j}}$ is progressively solvable, but not decidable.

Genin, Konstantin and Mayo-Wilson, Conor. "Statistical Decidability in Linear, Non-Gaussian Models." *Causal Discovery & Causality-Inspired Machine Learning, NeurIPS 2020.*

Topological Criterion for Decidability

Theorem. (Genin & Kelly, 2017)

A question is decidable if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

 $P_{\mathcal{A}}$ is disjoint from the (weak topology) closure of $P_{\mathcal{B}}$.

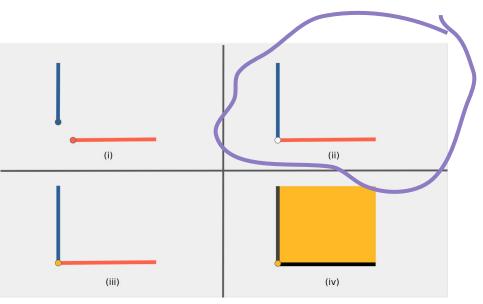
Genin, Konstantin, and Kevin T. Kelly. (2017) "The Topology of Statistical Verifiability." *Electronic Proceedings in Theoretical Computer Science* 251: 236–50. <u>https://doi.org/10.4204/EPTCS.251.17</u>.

The LiNGAM Model

Theorem (Genin and Mayo-Wilson, 2

- A. noise terms are independer
- B. functional relationships are I
- C. there are no unobserved con

then

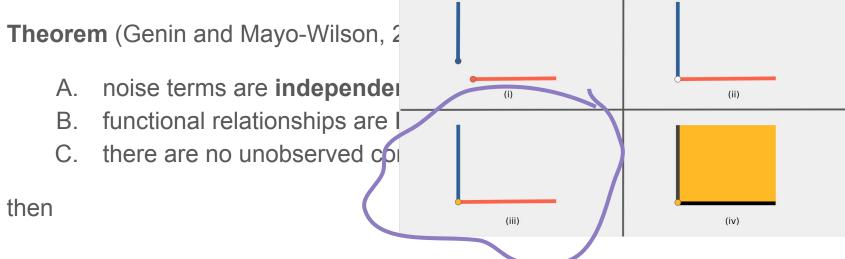


1. $\mathfrak{Q} = {\mathcal{M}^{i \to j}, \mathcal{M}^{i \leftarrow j}}$ is decidable, but not uniformly decidable;

2. $\mathfrak{Q} = {\mathcal{M}^{ioj}, \mathcal{M}^{i \rightarrow j}, \mathcal{M}^{i \leftarrow j}}$ is progressively solvable, but not decidable.

Genin, Konstantin and Mayo-Wilson, Conor. "Statistical Decidability in Linear, Non-Gaussian Models." *Causal Discovery & Causality-Inspired Machine Learning, NeurIPS 2020.*

The LiNGAM Model



- 1. $\mathfrak{Q} = {\mathcal{M}^{i \to j}, \mathcal{M}^{i \leftarrow j}}$ is decidable, but not uniformly decidable;
- **2.** $\mathfrak{Q} = {\mathcal{M}^{ioj}, \mathcal{M}^{i \rightarrow j}, \mathcal{M}^{i \leftarrow j}}$ is progressively solvable, but not decidable.

Genin, Konstantin and Mayo-Wilson, Conor. "Statistical Decidability in Linear, Non-Gaussian Models." *Causal Discovery & Causality-Inspired Machine Learning, NeurIPS 2020.*

LiNGAM + Confounding - Unfaithfulness

Theorem (Salehkaleybar et al., 2020). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are linear and a-cyclic,
- 3. there **may be** unobserved confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables are identified.

Salehkaleybar, Saber, et al. (2020) "Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables." *Journal of Machine Learning Research* 21.39: 1-24.

LiNGAM + Confounding - Unfaithfulness

Theorem (Salehkaleybar et al., 2020). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are linear and a-cyclic,
- 3. there **may be** unobserved confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between observed variables are identified.

But how *identified* are they, really?

Salehkaleybar, Saber, et al. (2020) "Learning Linear Non-Gaussian Causal Models in the Presence of Latent Variables." *Journal of Machine Learning Research* 21.39: 1-24.

Good News

Theorem (Genin, 2021). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are **linear** and **a-cyclic**,
- 3. there **may be** unobserved confounders, but
- 4. there are no cancelling paths (faithfulness),

then causal ancestry relationships between **observed** variables are **decidable in the limit**.

Topological Criterion for Limiting Decidability

Theorem. (Dembo & Peres, 1994)

A question is decidable in the limit if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

- $P_{\mathcal{A}}$ is disjoint from $P_{\mathcal{B}}$;
- P_{A} is a countable union of closed sets in the weak topology.

Dembo, Amir, and Yuval Peres (1994). "A Topological Criterion for Hypothesis Testing." *Annals of Statistics* 22(1): 106–17. https://doi.org/10.1214/aos/1176325360.

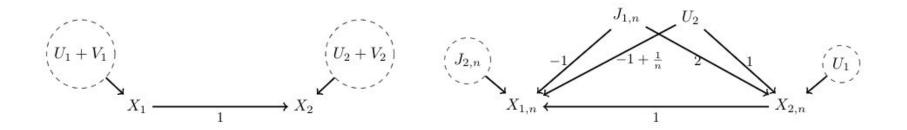
Theorem (Genin, 2021). When

- 1. noise terms are independent and non-Gaussian,
- 2. functional relationships are linear and a-cyclic,
- 3. there **may be** confounders, but
- 4. there are no cancelling paths (faithfulness),

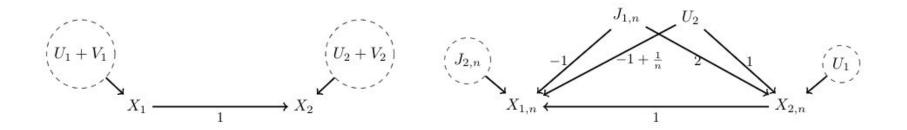
then causal ancestry relationships between **observed** variables are **not decidable**.

Flipping returns when we allow for unobserved confounders.

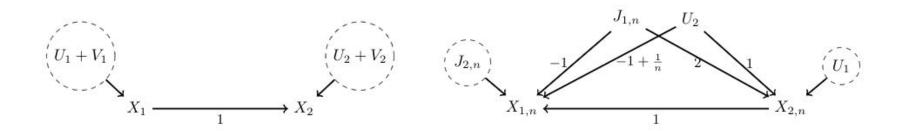
Although causal orientation is a solvable problem (assuming faithfulness), it is no longer decidable.



Let Z_1 , Z_2 be independent, Gaussian.

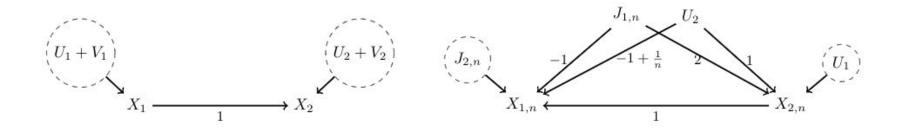


Let $V_1 = Z_1 + Z_2$ and $V_2 = Z_1 - Z_2$. Then $U_1 + V_1$ and $U_2 + V_2$ are independent and non-Gaussian.



Let $J_{1,n} = Z_1 + (1/n)W_1$ and $J_{2,n} = Z_2 + (1/n)W_2$.

Then the rhs are faithful, confounded LiNGAMs and $(X_{1,n}, X_{2,n}) \Rightarrow (X_1, X_2)$.



Topological Criterion for Decidability

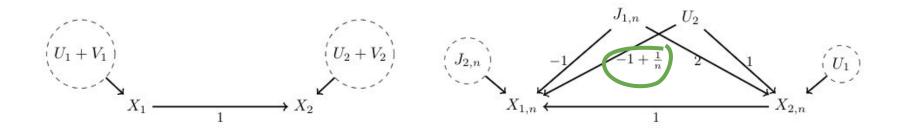
Theorem. (Genin & Kelly, 2017)

A question is decidable if for answers \mathcal{A} , \mathcal{B} in \mathfrak{Q} ,

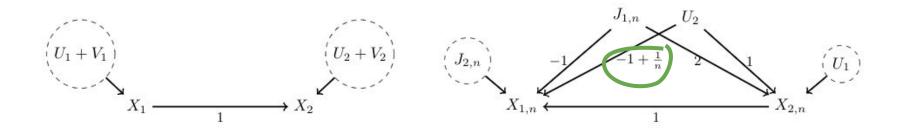
 $P_{\mathcal{A}}$ is disjoint from the (weak topology) closure of $P_{\mathcal{B}}$.

Genin, Konstantin, and Kevin T. Kelly. (2017) "The Topology of Statistical Verifiability." *Electronic Proceedings in Theoretical Computer Science* 251: 236–50. <u>https://doi.org/10.4204/EPTCS.251.17</u>.

Route 1: Strengthen Faithfulness Assumption.



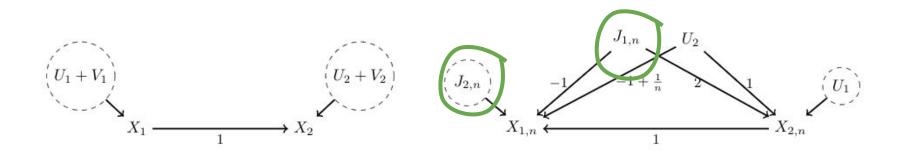
Route 1: Strengthen Faithfulness Assumption.



Uhler, Caroline, et al. "Geometry of the faithfulness assumption in causal inference." The Annals of Statistics (2013): 436-463.

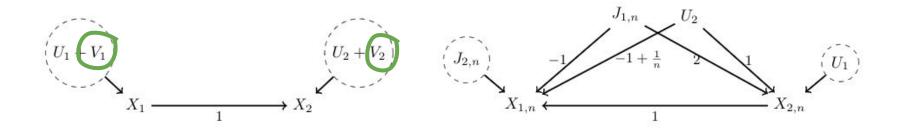
Route 2: Strengthen Non-Gaussianity Assumption.

Recall: $J_{1,n} = Z_1 + (1/n)W_1$ and $J_{2,n} = Z_2 + (1/n)W_2$.



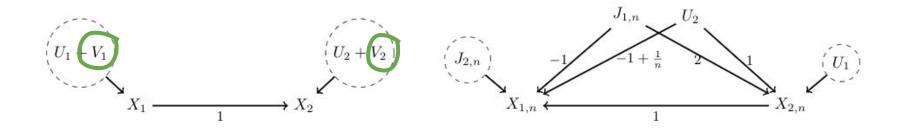
Route 3: No Gaussian Components.

Recall $V_1 = Z_1 + Z_2$ and $V_2 = Z_1 - Z_2$.



Route 3: No Gaussian Components.

X has Gaussian components if X = Y + Z, with $Y \perp Z$ and Z Gaussian.



FLAMNGCo Model

A "flamingo" is a Faithful, Linear, Acyclic Model with No Gaussian Components.

More precisely: no **linear combination** of exogenous noise terms has a Gaussian component.

Decidability Returns

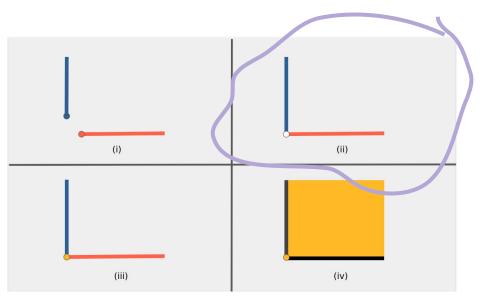
Theorem (Genin and Mayo-Wilson, 2022). If

- A. There are no cancelling paths (faithfulness),
- B. functional relationships are linear and a-cyclic,
- C. there **may** be unobserved confounders, but
- D. no linear combination of noise terms has a Gaussian component,

then

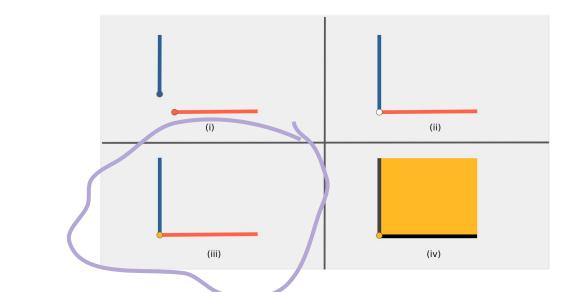
- 1. $\mathfrak{Q} = {\mathcal{M}^{i \leftrightarrow j}, \mathcal{M}^{i \leftarrow j}}$ is decidable, but not uniformly decidable;
- 2. $\mathfrak{Q} = {\mathcal{M}^{i \circ j}, \mathcal{M}^{i \circ j}, \mathcal{M}^{i \circ j}}$ is progressively solvable, but not decidable.

FLAMNGCo Model, or: Decidability Returns



- **1.** $\mathfrak{Q} = {\mathcal{M}^{i \leftrightarrow j}, \mathcal{M}^{i \leftarrow j}}$ is decidable, but not uniformly decidable;
- 2. $\mathfrak{Q} = {\mathcal{M}^{i \circ j}, \mathcal{M}^{i \circ j}, \mathcal{M}^{i \circ j}}$ is progressively solvable, but not decidable.

FLAMNGCo Model, or: Decidability Returns



- 1. $\mathfrak{Q} = {\mathcal{M}^{i \leftrightarrow j}, \mathcal{M}^{i \leftrightarrow j}}$ is decidable, but not uniformly decidable;
- **2.** $\mathfrak{Q} = {\mathcal{M}^{i \circ j}, \mathcal{M}^{i \circ j}, \mathcal{M}^{i \circ j}}$ is progressively solvable, but not decidable.

Thank You!

Questions: konstantin.genin@uni-tuebingen.de