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Some Trivial Observations

At first glance, frequentist practice looks 
falsificationist.



Some Trivial Observations

Consider a test of a sharp null hypothesis 
(e.g. ‘the coin is fair’) that “rejects” upon 
observing an event that would be highly 
improbable if the null were true and otherwise 
“accepts”. 



Some Trivial Observations

● If null is true, low chance of rejecting in 
error :: rejecting a universal hypothesis 
when confronted with a countervailing 
instance.

● If null is (subtly) false, high chance of 
accepting in error :: accepting a 
universal hypothesis when confronted 
with many confirming instances.



Statistician’s Self-Conception

“. . . the hypothesized model makes certain 
probabilistic assumptions, from which other 
probabilistic implications follow deductively. 
Simulation works out what those 
implications are, and tests check whether 
the data conform to them. Extreme p-values 
indicate that the data violate regularities 
implied by the model, or approach doing so. 
… ”

Gelman, Andrew, and Cosma Rohilla Shalizi. "Philosophy and the practice of Bayesian statistics." 
British Journal of Mathematical and Statistical Psychology 66.1 (2013): 8-38.
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Statistician’s Self-Conception

“. . . If these were strict violations of 
deterministic implications, we could just apply 
modus tollens to conclude that the model 
was wrong; as it is, we nonetheless have 
evidence and probabilities. Our view of 
model checking, then, is firmly in the long 
hypothetico-deductive tradition, running from 
Popper (1934/1959) back through Bernard 
(1865/1927) and beyond (Laudan, 1981).”

Gelman, Andrew, and Cosma Rohilla Shalizi. "Philosophy and the practice of Bayesian statistics." 
British Journal of Mathematical and Statistical Psychology 66.1 (2013): 8-38.
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Popper’s Stumbling Block

“… although probability statements play such a 
vitally important role in empirical science, they turn 
out to be in principle impervious to strict falsification. 
Yet this very stumbling block will become a 
touchstone upon which to test my theory, in order to 
find out what it is worth” (Popper, 1959, p. 133).



Popper’s Stumbling Block

“… a physicist is usually quite well able to decide 
whether he may for the time accept some particular 
probability hypothesis as ‘empirically confirmed’, or 
whether he ought to reject it as ‘practically 
falsified’, i.e. as useless for the purposes of 
prediction.  … ” (Popper, 1959, p. 182).



Popper’s Stumbling Block

“It is fairly clear that this ‘practical falsification’ can 
be obtained only through a methodological 
decision to regard highly improbable events as 
ruled out … But by what right can they be so 
regarded? Where are we to draw the line? Where 
does this “high improbability” begin?” (Popper, 1959, 
p. 182).



Proposals and Critiques

● Fisher (1959) and Gillies (1971): just 
pick some canonical event that is highly 
improbable if the hypothesis is true.



Proposals and Critiques

● Fisher (1959) and Gillies (1971): just 
pick some canonical event that is highly 
improbable if the hypothesis is true.

● Neyman (1952)  and Redhead (1974): 
there is no unique convention satisfying 
this property; indeed competing 
conventions may give conflicting 
verdicts on every sample.



Proposals and Critiques

● Neyman and Pearson (1933): not enough to 
pick an event that is improbable if the 
hypothesis is true; should also be maximally 
probable if the hypothesis is false. 

● Typically no way to choose an event with 
“uniformly” high probability in all the 
possibilities in which the hypothesis is false: 
one must always favor some alternative over 
others.



Proposals and Critiques

Is there no non-arbitrary answer to this question?



Changing Tack: from Refutation to Refutability

● The question ‘which hypotheses are 
refutable?’ is at least as important as ‘when 
should data be taken to have refuted a 
hypothesis?’

● There does not have to be a univocal answer 
to the latter question; if there were it would no 
longer have a methodological/conventional 
aspect.



Changing Tack: from Refutation to Refutability

“Popper demands in science refutability, not 
refutation” (Redhead, 1974).



Changing Tack: from Synchronic to Diachronic

● Excessive focus on the synchronic virtues of 
falsification methods tends to obscure the 
social dimensions of our methodological 
decisions.

● A good methodological convention should, if 
adopted, support a pattern of successful 
replication by independent investigators. 



Why Not Severe Testability?

● H is severely tested by E if, were H false, 
evidence less favorable to H would probably 
have been observed.
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Why Not Severe Testability?

● H is severely tested by E if, were H false, 
evidence less favorable to H would probably 
have been observed.

● Why not falsifiable = severely testable?

● Too radical a revision: sharp null hypotheses 
like ‘the coin is fair’ would not be falsifiable.



The Guiding Analogy

Error Avoidance. Output conclusions are true. α-Error Avoidance. At every sample size, the 
chance that the output conclusion is true > 1-α.

Monotonicity. Logically stronger inputs yield 
logically stronger conclusions.

α-Monotonicity in Chance. If H is [ true | false], 
then, for any sample sizes n1< n2,  the chance 
of correctly [accepting | rejecting] H decreases 
by no more than α. 

Limiting Convergence. The method converges 
to ㄱH if, and only if, H is false.

Limiting Convergence in Chance. The method 
convergence in chance to ㄱH if, and only if, H 
is false.

“Classical” Phil. Science                                                      Statistics
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Monotonicity. Logically stronger inputs yield 
logically stronger conclusions.

Monotonicity in Chance. If H is [ true | false], 
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of correctly [accepting | rejecting] H does not 
decrease. 

Limiting Convergence. The method converges 
to ㄱH if, and only if, H is false.
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The Guiding Analogy

Error Avoidance. Output conclusions are true. α-Error Avoidance. At every sample size, the 
chance that the output conclusion is true > 1-α.

Monotonicity. Logically stronger inputs yield 
logically stronger conclusions.

α-Monotonicity in Chance. If H is [ true | false], 
then, for any sample sizes n1< n2,  the chance 
of correctly [accepting | rejecting] H decreases 
by no more than α. 

Limiting Falsification. The method converges to 
ㄱH if, and only if, H is false.

Limiting Falsification  in Chance. The method 
convergence in chance to ㄱH if, and only if, H 
is false.

“Classical” Phil. Science                                                      Statistics



α-Monotonicity 
If H is [ true | false], then, for any sample sizes n1< n2,  the chance of correctly 
[accepting | rejecting] H decreases by no more than α. 

F1.5. H is falsifiable iff there is a method M that falsifies H in the limit and, for 
every α > 0, M is  α-error avoiding;

F2. H is falsifiable iff for every α > 0, there is an α-error avoiding method M that 
falsifies H in the limit.p
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α-Monotonicity 
Surprisingly, many textbook statistical tests are not even α-progressive.

Chernick, Michael R., and Christine Y. Liu. (2002) “The Saw-Toothed Behavior of Power Versus Sample Size and Software Solutions.” 
The American Statistician 56, no. 2: 149–55. https://doi.org/10.1198/000313002317572835.

https://doi.org/10.1198/000313002317572835


α-Monotonicity 
Collecting a larger sample may be a bad idea!

Chernick, Michael R., and Christine Y. Liu. (2002) “The Saw-Toothed Behavior of Power Versus Sample Size and Software Solutions.” 
The American Statistician 56, no. 2: 149–55. https://doi.org/10.1198/000313002317572835.

https://doi.org/10.1198/000313002317572835


Falsifiability Three (and a half) Ways
F1. H is falsifiable iff there is a monotonic, error-avoiding method M that falsifies H 
in the limit;

F1.5. H is falsifiable iff there is a method M that falsifies H in the limit and, for 
every α > 0, M is  α-error avoiding;

F2. H is falsifiable iff for every α > 0, there is an α-error avoiding method M that 
falsifies H in the limit.
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The Problem Context
A set W of models, i.e. a set of contextually relevant epistemic possibilities.
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  M

W
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The Problem Context
Each model M determines a unique probability distribution PM over Ω, the space 
of outcomes. 

W
. 
  M

Ω
                  PM



Weak Topology
● The distributions Pn converge in the weak topology to P if for all “feasible” 

events A,  Pn(A) → P(A).

● A is feasible in P if P(∂A) = 0, where ∂A is the topological boundary of A.

● We assume that every basic open O⊆Ω is feasible in every PM. Ω
                  



Statistical Tests
A set of measurable functions (Tn) is a test of H if each one is a function from 
samples of size n to {W,ㄱH} and Tn

-1(ㄱH) is feasible in every PM.

Note: we interpret failure to reject H as suspension of judgement.

If PMn ⇒ PM then, for all tests, PMn(Tn rejects) → PM(Tn rejects).



Statistical Falsifiability: F2
Say that a hypothesis H ⊆ W is α-falsifiable iff 

● there exists a consistent hypothesis test of H;
● with significance level α1 at every sample size.

Say that a hypothesis H is refutable iff H is α-refutable for every α>0.

1. A test of H has significance level α if the probability of falsely rejecting H is less than α.  



Statistical Falsifiability: F2
Say that a hypothesis H ⊆ W is α-falsifiable iff there is a sequence of tests (Tn) 
s.t.

● PM( Tn = reject)→1  for all M ∉ H as n →∞;
● PM( Tn = reject)  <  α  for all M ∈ H.

Say that a hypothesis H is falsifiable iff H is α-refutable for every α>0.



Statistical Falsifiability: F2
Thm (Genin and Kelly, 2017). Hypotheses falsifiable in the sense of F2 are exactly 
the closed sets in the weak topology on probability measures PM.

In other words: falsifiable hypotheses are closed under (1) finite disjunction and (2) 
arbitrary conjunction.

(But issues of monotonicity are ignored!)

Genin, Konstantin and Kelly, Kevin T. (2017)  “The Topology of Statistical Verifiability”,  Proceedings of TARK XV, Liverpool, pp. 236-50.



Falsifiability Three (and a half) Ways
F1. H is falsifiable iff there is a monotonic, error-avoiding method M that falsifies H 
in the limit;

F1.5. H is falsifiable iff there is a method M that falsifies H in the limit and, for 
every α > 0, M is  α-error avoiding;

F2. H is falsifiable iff for every α > 0, there is an α-error avoiding method M that 
falsifies H in the limit;

F3. H is falsifiable iff or every α > 0, there is an α-error avoiding and α-monotonic 
method M that falsifies H in the limit.



Statistical Falsifiability: F3
Say that a hypothesis H ⊆ W is α-monotonically falsifiable iff there is a 
sequence of tests (Tn) s.t.

● PM( Tn = reject)→1   for all M ∉ H as n →∞;
● PM( Tn = reject)  <  α   for all M ∈ H;

● PM( Tn = reject)   ↓ 0   for all M ∈ H;
● PM( Tn1 = reject) < PM( Tn2 = reject) + α for all M ∉ H.

Say that a hypothesis H is monotonically falsifiable iff H is α-monotonically 
falsifiable for every α>0.



Statistical Falsifiability: F3
Thm (this paper). Hypotheses falsifiable in the sense of F3 are also exactly the 
closed sets in the weak topology on probability measures PM.

So insisting on monotonicity does not make any fewer hypotheses falsifiable!



Statistical Falsifiability: F3
Many standard hypothesis tests are defective!

Chernick, Michael R., and Christine Y. Liu. (2002) “The Saw-Toothed Behavior of Power Versus Sample Size and Software Solutions.” 
The American Statistician 56, no. 2: 149–55. https://doi.org/10.1198/000313002317572835.

https://doi.org/10.1198/000313002317572835


Why Does this Matter?
● Falsifiability notions F2 and F3 give rise to the exact same falsifiable 

hypotheses — evidence of a conceptual robustness. We can settle questions 
of falsifiability while remaining ecumenical about what exactly falsifiability 
means and what events should be taken as falsifying. 

● Questions of falsifiability can be settled with standard mathematical 
techniques from probability theory and statistics.

● Issues of monotonicity are under-developed, especially in discussions of 
replicable science.



Why Does this Matter?
Most interesting hypotheses are not 
falsifiable! 

There are exceptions! 

True. But falsifiable hypotheses are a 
fundamental building block of 
higher-complexity hypotheses.Genin, Konstantin, and Conor Mayo-Wilson. (2020) "Statistical Decidability in Linear, Non-Gaussian Causal Models." Proceedings of the Causal Discovery 

& Causality-Inspired Machine Learning Workshop, NeurIPS, Virtual.

Genin, Konstantin. (2021)  "Statistical Undecidability in Linear, Non-Gaussian Causal Models in the Presence of Latent Confounders." Advances in Neural 
Information Processing Systems 34.

Genin, Konstantin and Conor Mayo-Wilson. (forthcoming) “Success Concepts for Causal Discovery.” Behaviormetrika. 



Why Does this Matter?
Most interesting hypotheses are not 
falsifiable! 

Mostly True. But falsifiable 
hypotheses are a fundamental 
building block of higher-complexity 
hypotheses.



The Problem Context
A set W of models, i.e. a set of contextually relevant epistemic possibilities.
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The Problem Context
A question Q, partitioning W into a countable set of answers.

Q



Statistical Questions
A question Q, partitioning W into a countable set of answers.

Q

. 
  M

{QM



Statistical Solutions
A method (Ln) is a solution to Q iff for all M in W, 

● PM( Ln = QM ) →1  as n →∞.

A question Q is solvable iff it has a solution. 



Solvable Problems
Thm. A question Q is solvable iff each answer A in Q is a countable union of 
statistically falsifiable hypotheses.

Dembo, A., & Peres, Y. (1994). A topological criterion for hypothesis testing. The Annals of Statistics, 106-117.

Genin, Konstantin and Kelly, Kevin T. (2017)  “The Topology of Statistical Verifiability”,  Proceedings of TARK XV, Liverpool, pp. 236-50.



Why Does this Matter?
The Problem of Progress: Why is scientific method conducive to scientific 
progress?

The Problem of Ockham’s Razor: How is a consistent preference for simple 
theories conducive to scientific progress? 



The Problem of Progress

Popper’s Story: Science progresses through a series of 
simple (highly testable) conjectures, followed by dogged 
attempts at refutation.

But why think this is anything more than a series of bold 
mistakes, yielding to new, and bolder, mistakes? 
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The Problem of Progress

Lakatos Objects: Popper “offers a methodology without an 
epistemology or a learning theory, and confesses explicitly 
that his methodology may lead us epistemologically astray 
and, implicitly, that ad hoc stratagems might lead us to 
Truth.”  

The Role of Crucial Experiments in Science (1971).



The Problem of Progress

Popper hoped to show that the critical method leads to 
theories of increasing truthlikeness.

T1 is at least as verisimilar as T2 iff  

T1 has at least as many true consequences as, and no more 
false consequences than, T2. 

But Popper’s truthlikeness (verisimilitude) was famously 
trivialized by Pavel Tichy (1974) and David Miller (1974).
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T1 is at least as verisimilar as T2 iff 

T1 has at least as many true consequences as, and no more 
false consequences than, T2. 

But Popper’s truthlikeness (verisimilitude) was famously 
trivialized by Pavel Tichy (1974) and David Miller (1974).



The Problem of Progress

Oddie (1986) and Niiniluoto (1987, 1999) make more sophisticated iterations of 
truthlikeness. 



The Problem of Progress

“... the problem of estimating verisimilitude is neither 
more nor less difficult than the traditional problem of 
induction” (1987). 



Progressive Methods

A method for answering a scientific question is progressive iff

● the chance that it outputs the true answer is strictly increasing with 
sample size. 

That notion makes sense, even if it doesn’t make sense to ask which of two 
false theories is closer to the truth! 



Progressive Methods

A method for answering a scientific question is α-progressive iff

● the chance that it outputs the true answer never drops by more than α.
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Progressive Solutions
A solution to Q  (Ln) is progressive iff for all M in W and n1 < n2,

● PM( Ln1  = QM ) < PM( Ln2 = QM ).



α-Progressive Solutions
A solution to Q  (Ln) is α-progressive iff for all M in W and n1 < n2,

● PM( Ln1 = QM ) < PM( Ln2 = QM ) + α.

Problem Q is progressively solvable iff it has an α-progressive solution for all α > 0.
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Statistical Simplicity.
For A,B sets of models, say that A is as simple as B iff

● All refutable consequences of B are refutable consequences of A.
● Topologically: A ⊆ cl(B).

But this confounds logical strength and simplicity! 
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Statistical Simplicity.
For A,B disjoint sets of models, say that A is as simple as B iff

● All refutable consequences of B are refutable consequences of A.
● A,B disjoint and A ⊆ cl(B).

Tack-on problem! 

LIN is simpler than QUAD. 
LIN or the cat is on the mat is not simpler than QUAD. 

 



Statistical Simplicity.
For A,B disjoint sets of models, say that A is as simple as B iff

● All refutable consequences of B are consistent with A.
● A ∩ cl(B) ≠ ∅. 

 



Progressive Solutions
Theorem (Genin, 2018). If the answers to Q can be enumerated in agreement 
with simplicity, then it is progressively solvable.
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If A1, A2, A3 … is a enumeration of the answers agreeing with simplicity, a 
progressive method can be constructed by attempting to falsify larger initial 
segments of answers. 



Progressive Solutions
Theorem (Genin, 2018). If the answers to Q can be enumerated in agreement 
with simplicity, then it is progressively solvable.

If A1, A2, A3 … is a enumeration of the answers agreeing with simplicity, a 
progressive method can be constructed by attempting to falsify larger initial 
segments of answers. 

But the constituent falsifying methods must be sufficiently monotonic!



Ockham’s α-Razor 
Defn. Solution (Ln) satisfies Ockham’s α-razor iff (in each M) the chance of 
conjecturing an answer more complex than QM is less than  α.



Ockham’s α-Razor 
Defn. Solution (Ln) satisfies Ockham’s α-razor iff 

If QM is simpler than A ∈ Q, then PM(Ln = A) < α.



Progress and Simplicity
Theorem (Genin, 2018). Every α-progressive solution to Q satisfies Ockham’s 
α-razor. 

 



Progress and Simplicity
Theorem (Genin, 2018). Every α-progressive solution to Q satisfies Ockham’s 
α-razor. 

A non-circular, epistemic justification of Ockham’s razor 
in statistical science.



Progress and Simplicity
Theorem (Genin, 2018). Every α-progressive solution to Q satisfies Ockham’s 
α-razor. 

Violating Ockham’s razor means designing in a tendency to 
fail to replicate true results.



Progress and Simplicity
Theorem (Genin, 2018). Every α-progressive solution to Q satisfies Ockham’s 
α-razor. 

A carefully calibrated Popperian methodology can ensure 
That the degree of backsliding is arbitrarily low.



Synchronic Justification
Traditionally, epistemic justification has been synchronically conceived:

“Justifying an epistemic principle requires answering an epistemic question: why 
are simpler theories more likely to be true?”

Baker, Alan, "Simplicity", The Stanford Encyclopedia of Philosophy (Winter 2016 Edition), Edward N. Zalta (ed.), 
https://plato.stanford.edu/archives/win2016/entries/simplicity/.



Synchronic Justification
Demanding synchronic justification leads to despair: 

“[N]o one has shown that any of these rules is more likely to pick out true theories 
than false ones. It follows that none of these rules is epistemic in character.” 

Laudan, Larry. "The epistemic, the cognitive, and the social." Science, values, and objectivity (2004): 14-23.



Diachronic Justification
Going diachronic allows us to demonstrate that a systematic preference for simple 
theories is a necessary condition for a diachronic notion of progress.



Thank You!
konstantin.genin@uni-tuebingen.de


