
Simplicity	and	Scien.fic	Progress	

Konstan.n	Genin,	Kevin	Kelly	
Carnegie	Mellon	University	

	
Stanford	CSLI	Workshop	2018	



The	Synchronic	and	Diachronic	Schools	

Synchronic	School:	focused	on	the	finished	
products	of	science,	esp.	characterizing	which	
beliefs	(or	systems	of	belief)	cons.tute	ra.onal	
responses	to	evidence.			
	
Diachronic	School:	characterize	which	methods	
are	conducive	to	scien.fic	progress.	
	
Illka	Niiniluoto,	Scien'fic	Progress		(2015)	



Diachronic	School	
	

“…	progress	necessarily	involves	the	idea	
of	a	process	through	.me.	Ra.onality,	
on	the	other	hand,	has	tended	to	be	
viewed	as	an	atemporal	concept	…	most	
writers	see	progress	as	nothing	more	
than	the	temporal	projec.on	of	a	series	
of	individual	ra.onal	choices	….	we	may	
be	able	to	learn	something	by	inver.ng	
the	presumed	dependence	of	progress	
on	ra.onality.”	
	
Laudan,	Progress	and	its	Problems	(1978).	



Popper’s	Cri.cal	Ra.onalism	
	
Popper:	Science	progresses	
through	a	series	of	highly	testable	
conjectures,	followed	by	dogged	
aYempts	at	refuta.on.		
	



Popper’s	Cri.cal	Ra.onalism	
	
Popper:	Science	progresses	
through	a	series	of	highly	testable	
conjectures,	followed	by	dogged	
aYempts	at	refuta.on.		
	
But	why	think	this	is	anything	
more	than	a	series	of	bold	
mistakes,	yielding	to	new,	and	
bolder,	mistakes?		



Lakatos	Objects	
	
Popper	“offers	a	methodology	
without	an	epistemology	or	a	
learning	theory,	and	confesses	
explicitly	that	his	methodology	
may	lead	us	epistemologically	
astray,	and	implicitly,	that	ad	hoc	
stratagems	might	lead	us	to	
Truth.”			
	
Imre	Lakatos,	The	Role	of	Crucial	
Experiments	in	Science	(1971).	



Truthlikeness	
	
Popper	developed	a	theory	of	
verisimilitude,	hoping	to	show	that	
the	process	of	conjectures	and	
refuta.ons	leads	to	theories	of	
increasing	truthlikeness	(1963,	1970).		
	
Popper’s	idea	was	famously	trivialized	
(independently)	by	Pavel	Tichy	and	
David	Miller	(1974).	On	Popper’s	
account,	no	false	theory	is	more	
truthlike	than	any	other!	



Truthlikeness	Redux	

	
	
Oddie	(1986)	and	Niiniluoto	(1987,	1999)	make	
more	sophis.cated	aYempts	at	a	defini.on	of	
truthlikeness.	
	
	
	
	



Truthlikeness	Redux	

	
	
But	there	is	no	demonstra.on	that	any	method	
is	guaranteed	to	produce	increasingly	truthlike	
theories!		
	
	
	
	



Truthlikeness	Redux	

	
“appraisals	of	the	rela.ve	distances	
from	the	truth	presuppose	that	an	
epistemic	probability	distribu.on	.	.	.	
is	available.	In	this	sense	...	the	
problem	of	es.ma.ng	verisimilitude	
is	neither	more	nor	less	difficult	than	
the	tradi.onal	problem	of	
induc.on.”	
	
Illka	Niiniluoto,	Truthlikeness	(1987).	
	
	
	
	



•  Say	that	a	method	for	answering	a	ques.on	is	progressive	
if	the	chance	that	it	outputs	the	true	answer	is	strictly	
increasing	with	sample	size.	

•  That	no.on	makes	sense,	even	if	it	does	not	make	sense	
to	ask	which	of	two	false	theories	is	closer	to	the	truth!	

	
                                 
                              	
	

Progressive	Methods	



•  A	method	is	α-progressive	if	the	chance	that	it	outputs	
the	true	answer	never	decreases	by	more	than	α.	

	
                                 
                              	
	

Progressive	Methods	



Researchers	propose	recrui.ng	100	pa.ents	to	
inves.gate	whether	a	new	drug	is	beYer	at	trea.ng	
migraine	than	placebo.	In	their	grant,	they	analyze	their	
sta.s.cal	method	and	conclude	the	following:	if	the	new	
drug	is	significantly	beYer	than	placebo,	the	chance	that	
their	method	detects	the	improvement	is	greater	than	
50%.	The	funding	agency	is	sa.sfied.	Soon	aier,	the	
researchers	publish	a	paper	claiming	to	have	discovered	a	
promising	new	treatment!	
	
	
	
	
                                 
                              	
	

Progressive	Methods	



Now,	suppose	that	a	replica.on	study	is	proposed	with	
150	pa.ents.	However,	the	ex	ante	analysis	reveals	that	
the	objec.ve	chance	of	detec.ng	an	improvement	over	
placebo,	if	one	exists,	has	decreased	to	40%.	The	chance	
of	replica.ng	successfully	has	gone	down,	even	though	
the	first	study	may	well	be	correct,	and	yet	the	
inves.gators	propose	performing	a	larger	study!		
	
	
	
	
	
                                 
                              	
	

Progressive	Methods	



Surprisingly,	many	textbook	methods	in	frequent	
hypothesis	tes.ng	exhibit	this	perverse	behavior.	
	
	
	
	
	
	
Chernick	and	Liu,	The	Saw-toothed	behavior	of	power	vs.	
sample	size	and	soDware	solu'ons.	(2012)	
	
                                 
                              	
	

Progressive	Methods	



	
Theorem	(Genin):	For	typical	problems,	there	exists	an	α-
progressive	method	for	every	α > 0.	
	
                                 
                              	
	

Progressive	Methods	



	
Theorem	(Genin):	All	progressive	methods	must	
systema.cally	prefer	simpler	(more	falsifiable)	theories.	
	
                                 
                              	
	

A	Vindica.on	of	Neo-Popperian	Method	



The	Plan	
	

1.  Prove	this	result	in	the	simplified	semng	of	
proposi.onal	informa.on.	

2.  Port	this	result	to	the	semng	of	sta.s.cal	
informa.on.	

	



The	Topological	Bridge	
•  Start	with	logical	insights.		
•  Allow	methods	a	small	chance	α	of	error.	
•  Obtain	corresponding	sta.s.cal	insights	
	

	
	

Logic	

Sta.s.cs	



The	Topology	of	Informa.on	
	

I       topology 



Possible	Worlds	

		

W

w



Proposi.onal	Informa.on	State	

The	logically	strongest	proposi.on	you	are	
informed	of.	

W

E	



Proposi.onal	Informa.on	State	

•  I	is	the	set	of	all	possible	informa.on	states.	
•  I(w)  is	the	set	of	all	informa.on	states	true	in	w.	
•  I(w | E)  = { F in I(w)  : F ⊆	E  }	
	

W

E	 w



Proposi.onal	Informa.on	State	

Intended	Interpreta9on:			E		is	in	I(w)	iff	
	
a	diligent	inquirer	in		w		will	eventually	be	afforded	
informa.on	at	least	as	strong	as	E.			
	

W

E	 w



Three	Axioms	

1.  Some	informa.on	state	is	true	in	w.	
	

W

w



Three	Axioms	

1.  Some	informa.on	state	is	true	in	w.	
2.  Each	pair	of	informa.on	states	true	in	w	is	entailed	by	

an	informa.on	state	true	in	w.	

W

w



Three	Axioms	

1.  Some	informa.on	state	is	true	in	w.	
2.  Each	pair	of	informa.on	states	true	in	w	is	entailed	by	

an	informa.on	state	true	in	w.	
3.  There	are	at	most	countably	many	informa.on	states.	



Hume’s	Problem	

“The	bread,	which	I	formerly	ate,	
nourished	me	...	but	does	it	
follow,	that	other	bread	must	also	
nourish	me	at	another	.me	…	?	
The	consequence	seems	nowise	
necessary.”		
	
Hume,	Enquiry.	
	



Hume’s	Problem,	Topologized. 



Hume’s	Problem,	Topologized. 



Hume’s	Problem,	Topologized. 



Hume’s	Problem,	Topologized. 



Worlds	=	infinite	sequences	of	coin	flips.	
Eviden9al	states	=	cones	of	possible	extensions	of	
finite	sequences:	

	

Example:		Sequen.al	Binary	Experiment	

observed	so	far	

possible	
extensions	



Worlds	=	infinite	sequences	of	coin	flips.	
Eviden9al	states	=	cones	of	possible	extensions	of	
finite	sequences:	

	

Example:		Sequen.al	Binary	Experiment	

observed	so	far	



Example:		Measurement	of	X 

•  Worlds	=	real	numbers.	
•  Informa9on	states	=	open	intervals.	

(						)	

X 0	



Example:		Joint	Measurement	

•  Worlds	=	points	in	real	plane.	
•  Informa9on	states	=	open	rectangles.	

(0,	0)	

(		)	

(						)	

X	

Y	



Example:		Func.ons	

•  Worlds	=	func.ons		
	

f : R ! R.

f



Example:		Func.ons	

•  An	observa9on	is	a	joint	measurement.	
	

f
(x,	x’)	

(y
,	y
’)	



Example:		Func.ons	

•  The	informa9on	state	is	the	set	of	all	worlds	
that	touch	each	observa.on.	

	



Deduc.ve	Verifica.on	and	Refuta.on	

H	is	verified	by	E			iff		E	⊆	H.	
H	is	refuted	by	E			iff		E	⊆	Hc.	
H	is	decided	by	E			iff		H	is	either	verified	or	refuted	by	E.	
	

w

H Hc 



Will	be	Verified	
w	is	an	interior	point	of	H	iff		
                   iff H	will	be	verified	in	w;	

	                iff there	is	E	in	I(w)	s.t.	H	is	verified	by	E.	

w

H Hc 



Topological	Operators	as	Modal	
Operators	

int	H						:=			the	proposi.on	that	H	will	be	verified.	
cl	H								:=			the	proposi.on	that	H	will	never	be	refuted.	
	
	
	

			

		

int Hc int H 

wH Hc 
	 	 	 	 	

cl H cl Hc 



Topological	Operators	
frntr	H		:=	the	proposi.on	that	H	is	false	but	will	never	be	refuted.	

frntr	Hc	:=	the	proposi.on	that	H	is	true	but	will	never	be	verified.													

frntr(Hc)	frntr(H)			

wH Hc 



Verifiability,	Refutability,	Decidability	

H	is	verifiable	(open)		iff			H	⊆	int(H).	

i.e.,	iff	H	will	be	verified	however	H	is	true.			
	
H	is	refutable	(closed)		iff		cl(H)	⊆	H.	
i.e.,	iff	H	will	be	refuted	however	H	is	false.			

	
H	is	decidable	(clopen)		iff		H	is	both	
verifiable	and	refutable.			

w
H 

w
H 

w
H 



The	Topology	of	Informa.on 

•  A	topology	on	W	is	determined	by	its	open	
(verifiable)	proposi.ons.		

•  Every	verifiable	proposi.on	is	a	disjunc.on	of	
informa.on	states	in	I.	

WW

w



Interior	

int	H		=	the	proposi.on	that	H	will	be	verified.	

Int	{					}	=	{					}			

Int	{					}	=								?



Open	=	Verifiable	

H is	open	(verifiable)	iff	H entails int	H.	

Int	{					}	=	{					}			

Int	{					}	=								?



Closure	

Cl	{					}	=	{					,					}			

Cl	{					}	=	{					}							

		cl	H		=	the	proposi.on	that	H will	never	be	refuted.	



Closed	=	Refutable	
 
H	is	closed	(refutable)		iff		cl	H		entails	H.	
																					

Cl	{					}	=	{					,					}			

Cl	{					}	=	{					}							



Fron.er	

frntr	H		=		H	is	false,	but	will	never	be	refuted.	
															

Frntr	{					}	=	{					}	

Frntr	{					}	=		?



Hume’s	Problem,	Enhanced.	

1	

3	



Hume’s	Problem,	Enhanced.	

1	

3	 Frntr	{					}	=	{					}	



Hume’s	Problem,	Enhanced.	

1	

3	 Frntr	{					}	=	{					}	

Frntr	{					}	=	{					}	1



Hume’s	Problem,	Enhanced.	

1	

2	 Frntr	{					}	=	{					}	

Frntr	{					}	=	{					}	1

Frntr	{					}	=		?1



Locally	Closed	
H	is	locally	closed		iff		frntr	H	is	closed.	

1	

2	 open	

closed	

locally	closed	



Locally	Closed	
H	is	locally	closed		iff		H	entails	that	H	will	be	
refutable	(closed).	

1	

2	 open	

closed	

locally	closed	



Sequen.al	Example	

etc. 
H2	=	“You	will	see	T	exactly	twice”	is	locally	closed.	
H1	=	“You	will	see	T	exactly	once”	is	locally	closed.	
H0	=	“You	will	never	see	T”	is	closed.	
	

H				H				H				H				H				H				H				H				H				H				H	

T				H				H				H				H				H				H				H				H				H			H	
H	
H	
H	
T	



Equa.on	Example	

etc. 
H2		=		“quadra.c”	is	locally	closed. 
H1		=		“linear”	is	locally	closed. 
H0		=		“constant”	is	closed.	
	



Topology	

•  H	is	limi9ng	open	iff	H	is	a	countable	union	of	locally	
closed	sets.	

•  H	is	limi9ng	closed	iff	Hc	is	limi.ng	open.	
•  H	is	limi9ng	clopen	iff	H	is	both	limi.ng	open	and	
limi.ng	closed.			

	



•  Proposi9onal	methods	produce	proposi.onal	
conclusions	in	response	to	proposi.onal	informa.on.	

Proposi.onal	Methods	

M 
H	E	



•  M	is	infallible	iff		w ∈ M(E),	whenever	E ∈	I(w).	

•  M	is	monotonic	iff		M(F) ⊆ M(E),	whenever	F ⊆ E.		

Proposi.onal	Methods	



M	converges	to	H	in	w	iff		
	
there	is	E in	I(w) such	that		
						for	all	F	in	I (w | E),		
          	      M(F)	⊆	H.	

Convergence	



•  A	verifica9on	method	for	H	is	an	infallible,	monotonic	method	
V	such	that:	
1.  w	∈	Hc   implies				V(E)	=	W for E in I(w); 
2.  w	∈	H    implies				V	converges	to	H in w.		

 

Deduc.ve	Methods	



•  A	verifica9on	method	for	H	is	an	infallible,	monotonic	method	
V	such	that:	
1.  w	∈	Hc   implies				V(E)	=	W for E in I(w); 
2.  w	∈	H    implies				V	converges	to	H in w.		

•  A	refuta9on	method	for	H	is	just	a	verifica.on	method	for		Hc.	
•  A	decision	method	for	H	converges	to	H	or	to	Hc	without	

error.	

Deduc.ve	Methods	



•  A	verifica9on	method	for	H	is	an	infallible,	monotonic	method	
V	such	that:	
1.  w	∈	Hc   implies				V(E)	=	W for E in I(w); 
2.  w	∈	H    implies				V	converges	to	H in w.		

•  A	refuta9on	method	for	H	is	just	a	verifica.on	method	for		Hc.	
•  A	decision	method	for	H	converges	to	H	or	to	Hc	without	

error.	
•  H	is	methodologically	verifiable	[refutable,	decidable,	etc.]	iff	

H	has	a	method	of	the	corresponding	kind.	

Deduc.ve	Methods	



•  A	limi9ng	verifica9on	method	for	H	is	a	method	V such	that:	
w	∈	H 		iff			V	converges	in	w to	some	true	H’	that	entails	H.		

	
	

Induc.ve	Methods	



•  A	limi9ng	verifica9on	method	for	H	is	a	method	V such	that:	
w	∈	H 		iff			V	converges	in	w to	some	true	H’	that	entails	H.		

•  A	limi9ng	refuta9on	method	for	H	is	a	limi.ng	verifica.on	
method	for	Hc. 

•  A	limi9ng	decision	method	for	H	is	a	limi.ng	verifica.on	
method	and	a	limi.ng	refuta.on	for	H.	

	

Induc.ve	Methods	



Topological	Complexity	

			
	
	
	

open	

clopen	

closed	

limi.ng	clopen	

limi.ng	closed	 limi.ng	open	



Characteriza.on	Theorem	

		 	
	
	
	

open	
verifica.on	meth.	

clopen	
decision	meth.	

closed	
refuta.on	meth.	

limi.ng	clopen	
limi.ng	

decision	meth.	

deduc9on	

limi.ng	closed	
limi.ng	

refuta.on	meth.	

limi.ng	open	
limi.ng	

verifica.on	meth.	

induc9on	

Genin	and	Kelly,	2016		



OCKHAM’S	TOPOLOGICAL	RAZOR	



Popper’s	Simplicity	Order	

•  “More	falsifiable	hypotheses	are	simpler”.	

 
 

A � B , A ✓ clB.

H1 � H2 � H3.

H				H				H				H				H				H				H				H				H				H				H	

T				H				H				H				H				H				H				H				H				H				H	
H	

H	

H	

T	



A	Big	Mistake	

   
 

1.  Weaker	hypotheses	are	less	falsifiable.	

2.  So	suspending	judgment	violates	Ockham’s	razor!	

A � B , A ✓ clB.

A � W.

A ✓ B implies A � B.



Easy	and	Natural	Fix	

Lack	of	falsifiers	is	bad	only	if	A	is	false!	

H1 � H2 � H3.

H				H				H				H				H				H				H				H				H				H				H	

T				H				H				H				H				H				H				H				H				H				H	
H	

H	

H	

T	

A � B , A ✓ frntrB



A	Smaller	Issue	

•  Gerrymandered	hypotheses	can	obscure	simplicity	
rela.ons.	

•  E.g.,	“The	true	law	is	linear,	or	the	cat	is	on	the	mat”	is	
not	simpler	than	“The	true	law	is	quadra.c”.	

	

	



A	Response	

Simpler	theories	have	simpler	ways	of	being	true.	
	

	
H				H				H				H				H				H				H				H				H				H				H	

T				H				H				H				H				H				H				H				H				H				H	
H	

H	

H	

T	

H1 /H2 /H3.

A /B , A \ frntrB 6= ?



Example:	Compe.ng	Paradigms	

Y =

PN
i=0 ai sin(iX) + bi cos(iX).

Y =
PN

i=0 aiX
i.

Trigonometric	polynomial	paradigm	

Polynomial	paradigm	



Example:	Compe.ng	Paradigms	

Y =

PN
i=0 ai sin(iX) + bi cos(iX).

Y =
PN

i=0 aiX
i.

Trigonometric	polynomial	paradigm	

Polynomial	paradigm	

degree	



Example:	Compe.ng	Paradigms	

I = finitely many inexact measurements.

0	

2	

3	

0	

2	

3	

Q = which degree and which paradigm is true?

closed	

locally	
closed	

locally	
closed	

locally	
closed	

closed	

locally	
closed	

locally	
closed	

locally	
closed	

1	 1	



Example:	Compe.ng	Paradigms	
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Example:	Compe.ng	Paradigms	
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Example:	Compe.ng	Paradigms	

I = finitely many inexact measurements.

0	

2	

3	

0	

2	

3	

Q = which degree and which paradigm is true?

closed	

locally	
closed	

locally	
closed	

locally	
closed	

closed	

locally	
closed	

locally	
closed	

locally	
closed	

1	 1	



Ques.ons	

(Hamblin	1958)	

•  A	ques.on	par..ons	W	into	countably	many	possible	
answers																									

•  Relevant	responses	are	disjunc.ons	of	answers.	



	
	
Proposi9on	(Genin	and	Kelly,	2016).		The	following	
principles	are	equivalent.	
1.  Infer	a	simplest	relevant	response	in	light	of	E.	
2.  Infer	a	refutable	relevant	response	compa.ble	with	E.	
3.  Infer	a	relevant	response	that	is	not	more	complex	

than	the	true	answer.	
	
	
	

Ockham’s	Razor	



Empirical	Problem	

P = (W, I,Q).



Empirical	Problem	

					
					
	

				w	

Q(w) is the answer true in w.



A	solu9on	for																															is	a	proposi.onal	method	
V such	that		
	

w	∈	H 	iff		V	converges	in	w	to	some	true	H’	that	
entails													.		
	

A	problem	is	solvable	iff	it	has	a	solu.on.	
	
	

Solu.ons	
P = (W, I,Q)

Q(w)



Proposi9on.	A	problem																															is	solvable	iff	
every	answer	is	limi.ng	open.	
	
	
	
	
de	Brecht	and	Yamamoto	(2009)	
Baltag,	Gierasimczuk,	and	Smets	(2015)	
Genin	and	Kelly	(2015)	

	

Solvability,	Characterized.	

P = (W, I,Q)



A	solu.on	for																															is	progressive	iff	for	all	E	
in	I(w)	and	F	in	I(w | E ) :	

	
	if	V(E) entails	Q(w),	then	V(F)	entails	Q(w).		

	
That	is:	the	true	answer	is	a	fixed	point	of	inquiry.	
	
	
	
		
	
	
	

	

Progressive	Solu.ons	
P = (W, I,Q)



Proposi9on.		If	there	exists	an	enumera.on	A1, A2, … of	
the	answers	to Q   agreeing	with	the	simplicity	order,	
then	 Q  	is	progressively	solvable.		
	
	
		
	
	
	

	

Progressive	Solu.ons	



Proposi9on	(Genin	and	Kelly,	2016).		Every	progressive	
solu.on	obeys	Ockham’s	razor.	
                                 
                              	
	
	
	
	

Epistemic	Mandate	for	Ockham’s	Razor	
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Epistemic	Mandate	for	Ockham’s	Razor	
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By	favoring	a	complex	hypothesis,	you	lose	in	a	complex	
world!	
	
	
	
	

Non-Circular	

H																				Hc	

avoidable	

unavoidable	



Skep.cism	
That	story		
	
“…	may	be	okay	if	the	candidate	
theories	are	deduc.vely	related	to	
observa.ons,	but	when	the	
rela.onship	is	probabilis.c,	I	am	
skep.cal	…”	
	
Elliot	Sober	(2015).	



A	Worry	

•  Proposi.onal	informa.on	refutes	logically	
incompa.ble	possibili.es.	

H 
E 



A	Worry	

•  Proposi.onal	informa.on	refutes	logically	
incompa.ble	possibili.es.	

•  Typically,	sta.s.cal	samples	are	logically	compa.ble	
with	every	possibility.			
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Response	

Don’t	worry!																							
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Response	

Don’t	worry!														
	
																			Common	topological	structure	
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Recall:	Possible	Worlds	

		

W

w



Sta.s.cal	Worlds	
•  Probability	measures	over	a	sample	space.	
	

µ	

S 

W 



Recall:	Informa.on	States	

The	logically	strongest	proposi.on	you	are	
informed	of.	

W

E	



s 

Sta.s.cal	Informa.on?	

•  It	seems	that	the	only	sta.s.cal	informa.on	state	is	W.	

S 

W 
w 



Side-step	the	Worry	

								

Sta9s9cal		
informa9on	

Sta9s9cal		
verifiability	



Sta.s.cal	Informa.on	Topology	
Possibili.es	nearer	to	the	truth	should	be	harder	to	rule	
out	by	sta.s.cal	methods.	

S 

W 
µ	

H Hc 



Gathering	Sta.s.cal	Informa.on	
1.  The	sample	space	S	has	its	own	topology.	
2.  Choose	a	sample	event	Z	over	S.			
3.  Obtain	sample	s.	
4.  Observe	whether	Z	occurs.	

µ	

S 
Z 

s 



Feasible	Sample	Events	
•  You	can’t	decide	whether	a	sample	is	ra.onal-valued.	



Feasible	Sample	Events	
•  You	can’t	determine	whether	a	sample	hits	exactly	on	
the	boundary	of	an	open	interval.	
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Feasible	Sample	Events	
•  But	every	non-trivial	Z	on	the	real	line	has	boundary	
points.	

	

S 
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Feasible	Sample	Events	
•  That	doesn’t	maYer	sta.s.cally	as	long	as	the	
boundary	carries	0	probability.	

•  So	Z	is	a	feasible	sample	event	iff		
                   p(bdry	Z)	=	0,	for	each	p	in	W.	
•  I.e,	feasible	Z	is	almost	surely	clopen	(decidable)	in	S.			
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Feasible	Sta.s.cal	Models	
•  S	is	feasible	for	W		iff			

 S	has	a	countable	topological	basis	of	feasible	zones.			
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Sta.s.cal	Informa.on	Topology	
w	∈	cl(H)  iff		H	contains	a	sequence	of	worlds	µ1,	...,	
µn,	...	such	that	for	every	feasible	sample	event	Z	⊆	S:	

S 
Z 

W 
µ	

H Hc 

lim
n!1

µn(Z) ! µ(Z).



•  Proposi9onal	methods	produce	proposi.onal	
conclusions	in	response	to	proposi.onal	informa.on.	

Recall:	Proposi.onal	Methods	

M 
H	E	



•  Sta9s9cal	methods	produce	proposi.onal	conclusions	
in	response	to	sta.s.cal	samples.	

Sta.s.cal	Methods	

Mn 
H	X1, X2, …, Xn	



A	feasible	sta9s9cal	method	at	sample	size	n	is	a	func.on	Mn	from	
sample	events	in	Sn	to	proposi.ons	over	W	such	that:	
	

      (Mn)-1(H) is	feasible.	
	
A	feasible	sta9s9cal	method	is	a	collec.on		

	 	 	 	 	 	(Mn			:		n	∈	N)	
	of	feasible	sta.s.cal	methods	at	each	sample	size.			
	

Feasible	Sta.s.cal	Methods	



•  A	verifica9on	method	for	H	is	an	infallible,	monotonic	method	
V	such	that:	
1.  w	∈	Hc   implies				V	always	concludes	W. 
2.  w	∈	H    implies				V	converges	to	H.		

 

Recall:	Verifica.on	Methods	



•  A	sta9s9cal	verifica9on	method	for	H at	significance	
level	α	>	0	is	a	feasible	method	(Vn : n ≥ 1),	such	that:		
1.  at	each	sample	size,	outputs	W with	probability	at	least	1-α,	

if	H	is	false.			
2.  converges	in	probability	to	H,	if	H	is	true.	

	

•  H	is	sta9s9cally	verifiable	iff	H	has	a	sta.s.cal	
verifica.on	method	at	each	α	>	0.		

	

Sta.s.cal	Verifica.on	



•  A	sta9s9cal	verifica9on	method	for	H at	significance	
level	α	>	0	is	a	feasible	method	(Vn : n ≥ 1),	such	that:		
1. μn [Vn

-1(W)] ≥ 1 – α ,  if H is	false	in	μ; 	
2. μn [Vn

-1(H)] à 1,	if	H	is	true	in	μ.	

	

•  H	is	sta9s9cally	verifiable	iff	H	has	a	sta.s.cal	
verifica.on	method	at	each	α	>	0.		

	

Sta.s.cal	Verifica.on	



•  A	limi9ng	verifica9on	method	for	H	is	a	method	M 
such	that	in	every	world	w:	
H is	true	in	w		iff		M	converges	to	some	true	H’	that	entails	H.		
	

•  H	is	verifiable	in	the	limit	iff	H	has	a	limi.ng	verifier.	

	

	
	

Recall:	Verifica.on	in	the	Limit	



•  A	limi9ng	sta9s9cal	verifica9on	method	for	H		
–  converges	in	probability	to	some	H’ entailing	H	iff	H	is	true.			

 
•  H	is	sta9s9cally	verifiable	in	the	limit	iff	H	has	a	
limi.ng	sta.s.cal	verifier.	

	

Sta.s.cal	Verifica.on	in	the	Limit	



The	Proposi.onal	Hierarchy	

			
	
	
	

open		
=	

methodologically	
verifiable	

clopen		
=	

methodologically	
decidable	

closed	
	=	

methodologically	
refutable	

limi.ng	clopen	
=	

methodologically	
limi.ng	decidable	

limi.ng	closed	
=	

methodologically	
limi.ng	refutable	

limi.ng	open	
	=	

methodologically	
limi.ng	verifiable	



The	Main	Result		
	
	
Proposi9on.	(Genin,	Kelly	2017)	Suppose	that	S	is	
feasible	for	W.	Then,	the	open	sets	in	the	weak	
topology	are	exactly	the	sta.s.cally	verifiable	
hypotheses.		
	
	
	
	
	



The	Sta.s.cal	Hierarchy	

			
	
	
	

open		
=		

sta.s.cally	
verifiable	

clopen		
=	

sta.s.cally	
decidable	

closed	
	=	

sta.s.cally	
refutable	

limi.ng	clopen	
=	

sta.s.cally	
limi.ng	decidable	

limi.ng	closed	
=	

sta.s.cally	
limi.ng	refutable	

limi.ng	open	
	=	

sta.s.cally	
limi.ng	verifiable	

Genin	and	Kelly,	
2017.	



So	in	Both	Logic	and	Sta.s.cs:	

			
	
	
	

open		
=		

methodologically
verifiable	

clopen		
=	

methodologically		
decidable	

closed	
	=	

methodologically	
refutable	

limi.ng	clopen	
=	

methodologically	
limi.ng	decidable	

limi.ng	closed	
=	

methodologically	
limi.ng	refutable	

limi.ng	open	
	=	

methodologically	
limi.ng	verifiable	



The	Topological	Bridge	
	

	
	

Logic	

Sta.s.cs	



The	Topological	Bridge	
•  Start	with	logical	insights.		
•  Allow	methods	a	small	chance	α	of	error.	
•  Obtain	corresponding	sta.s.cal	insights	
	

	
	

Logic	

Sta.s.cs	



Sta.s.cal	Problem	

					
					
	

				µ	

A	sta.s.cal	ques.on	par..ons	a	set	of	probability	
measures	into	countably	many	answers.		

	
	



Sta.s.cal	Solu.ons	

					
					
	

				µ	

A	sta.s.cal	method	(Mn)	is	a	solu.on	to	Q		iff	for	all	µ	
																				
	
	

µn[M�1
n (Q(µ))]

n! 1.



	
	
Proposi9on	(Genin	and	Kelly,	2016).		The	following	
principles	are	equivalent.	
1.  Infer	a	simplest	relevant	response	in	light	of	E.	
2.  Infer	a	refutable	relevant	response	compa.ble	with	E.	
3.  Infer	a	relevant	response	that	is	not	more	complex	

than	the	true	answer.	
	
	
	

Recall:	Ockham’s	Razor	



Concern:	“consistency	with	E”	is	trivial	in	sta.s.cs.	
	
	
	
	
Response:		the		“err	on	the	side	of	simplicity”	version	of	
Ockham’s	razor	does	not	men.on	consistency	with	E.	
	
3.	Infer	a	relevant	response	that	is	more	complex	than	the	
true	answer	with	chance	<	α.			
	
	
	

Ockham’s	Sta.s.cal	Razor	



A	solu.on	(Mn)	to	Q			sa.sfies	Ockham’s	α-razor	iff		

Ockham’s	Sta.s.cal	Razor	

if A 2 Q and Q(µ) /A, then µn[M�1
n (A)] < ↵.



A	solu.on	(Mn)	to	ques.on	Q	is	progressive	if	the	chance	
that	it	outputs	the	true	answer	is	strictly	increasing	with	
sample	size,	i.e.	for	all	n1 < n2 :	
	
                                 
                              	
	

Progressive	Methods	

µn2 [M�1
n2

(Q(µ))] > µn1 [M�1
n1

(Q(µ))].



•  (Mn)	is	α-progressive	if	the	chance	that	it	outputs	the	true	
answer	never	decreases	by	more	than	α,	i.e.	for	n1 < n2:		

	
                                 
                              	
	

α-Progressive	Methods	

µn2 [M�1
n2

(Q(µ))] + ↵ > µn1 [M�1
n1

(Q(µ))].
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Theorem	(Genin,	2017):	If	there	exists	an	enumera.on	
A1, A2, … of	the	answers	to	Q  that	agrees	with	the	
simplicity	order,	then	there	exists	an	α-progressive	
method	for	every	α > 0.	
	
                                 
                              	
	

Progressive	Methods	



	
Theorem	(Genin,	2017):	Every	α-progressive	solu.on	
sa.sfies	Ockham’s	α-razor.	
	
                                 
                              	
	

Ockham	and	Progress	



•  Causal	inference	from	observa9onal	data.	
•  The	search	is	strongly	guided	by	Ockham’s	razor.	
•  Previously,	methods	were	only	proven	to	be	point-wise-
consistent.		

	
	
	
	

Applica.on:	Causal	Inference	from	
Non-experimental	Data	



	
	
	
	

Applica.on:	Causal	Inference	from	
Non-experimental	Data	

Proposi9on	(Genin,	2018).	For	the	problem	of	inferring	
Markov	equivalence	classes,	there	exist	α-progressive	
solu.on	for	every	α > 0.		
	
	
	
	



Thank	you!	


