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Synchronic	norms	of	theory	choice	restrict	the	theories	
one	can	choose	in	light	of	given,	empirical	informa2on.		



Norm	of	Choice:	Ockham’s	Razor	

•  Ockham:	“Pluralitas	non	est	ponenda	sine	neccesitate.”	
•  Science:	“All	else	equal,	prefer	simpler	theories.”	
•  Complexity:	
–  Free	parameters	
– Mul2ple	mechanisms	
–  Coincidences	
– Ad	hoc	hypotheses	

	



Norm	of	Choice:	Popper’s	Dictum	

•  Popper:	“All	else	equal,	prefer	more	falsifiable	theories.”	

	



Reconstruc2on	vs.	Reliability	

Ra7onal	Reconstruc7on	
•  Is	the	simpler	theory	more	

plausible?		
•  Can	prior	probabili2es	

encode	that	preference?	
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Reconstruc2on	vs.	Jus2fica2on	

Ra7onal	Reconstruc7on	
•  Is	the	simpler	theory	more	

plausible?	
•  Can	prior	probabili2es	

encode	that	preference?	
•  Of	course!	

Reliability	
•  Does	favoring	the	simpler	

theory	lead	one	to	the	truth	
beXer	than	alterna2ve	
strategies?	

•  How	could	you	show	that,	
without	assuming	that	the	
world	is	simple?	



Diachronic	norms	of	theory	change	govern	how	one	should	
change	one’s	current	beliefs,	in	light	of	new	informa2on.	



Norm	of	Minimal	Change	

Alchourrón,	Gärdenfors,	Makinson:		
To	ra*onally	accommodate	new	evidence,	one	ought	to	(1)	
add	only	those	new	beliefs,	and	(2)	remove	only	those	old	
beliefs,	that	are	absolutely	compelled	by	incorpora2on	of	new	
informa2on.	

	



How	are	the	norms	of	change	related	to	the	norms	of	choice?	
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It	is	a	strange	coincidence	that	the	philosophy	of	science	
has	focussed	on	the	monadic	(nonrela2onal)	features	of	
theory	choice,	while	philosophical	logic	has	emphasized	
the	dyadic	(rela2onal)	features	of	theory	change.	I	believe	
that	it	is	2me	for	researchers	in	both	fields	to	overcome	
this	separa2on	and	work	together	on	a	more	
comprehensive	picture	(RoX,	2000,	p.	15).	
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norms !
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Epistemic	jus,fica,on	consists	in	showing	that	the	norms	
are,	in	some	sense,	reliable,	or	truth-conducive.		
	



Tradi2onally,	truth-conduciveness	has	been	too	strictly	
conceived:	
	



“.	.	.	jus2fying	an	epistemic	principle	requires	
answering	an	epistemic	ques2on:	why	are	
parsimonious	theories	more	likely	to	be	
true?”	(Baker,	2013)	

Tradi2onally,	truth-conduciveness	has	been	too	strictly	
conceived:	
	



“Nature	is	pleased	with	simplicity,	and	affects	not	the	
pomp	of	superfluous	causes”	(Newton	et	al.,	1833).		

When	your	standards	are	too	high,	you	are	led	either	to	
metaphysics,	
	



“[N]o	one	has	shown	that	any	of	these	rules	is	more	
likely	to	pick	out	true	theories	than	false	ones.	It	
follows	that	none	of	these	rules	is	epistemic	in	
character”	(Laudan,	2004).		

…	or	despair.	
	



Truth	Conduciveness:	Too	Strong	

•  Theore2cal	virtues	do	not	indicate	the	truth	
the	way	litmus	paper	indicates	pH.		

•  Induc2ve	inferences	made	in	accordance	with	
the	ra2onality	principles	are	s2ll	subject	to	
arbitrarily	high	chance	of	error.	

	



Truth	Conduciveness:	Too	Strong	

We	can	make	progress	if	we	don’t	demand	the	
impossible:		

	
	

“The	fact	that	the	truth	of	the	predic2ons	
reached	by	induc2on	cannot	be	guaranteed	
does	not	preclude	a	jus2fica2on	in	a	weaker	
sense”	(Carnap,	1945).	



Truth	Conduciveness:	Too	Weak	

•  Truth-indica2veness	is	too	strong	a	standard.	
But	mere	convergence	to	the	truth	in	the	limit	
is	too	weak	to	mandate	any	behavior	in	the	
short	run.		

	
	

“Reichenbach	is	right	...	that	any	procedure,	which	does	not	
[converge	in	the	limit]	is	inferior	to	his	rule	of	induc2on.	
However,	his	rule	...	is	far	from	being	the	only	one	possessing	
that	characteris2c.	The	same	holds	for	an	infinite	number	of	
other	rules	of	induc2on.	...	Therefore	we	need	a	more	general	
and	stronger	method	for	examining	and	comparing	any	two	
given	rules	of	induc7on	...”	(Carnap,	1945)	



Truth	Conduciveness:	Just	Right	
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•  Non-amplia2ve	
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•  Monotonic	
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•  Amplia2ve	
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Reliability	

Deduc7ve	Reliability	
•  Converge	to	the	truth	

directly	
•  Informa2on	determines	the	

right	answer	

Op7mal	Induc7ve	Reliability	
•  Converge	to	the	truth	as	

directly	as	possible.	
•  Implies	strong	short-run	

norms.		E.g….	
	



Reliability	

Pursuit	of	truth	ought	to	be	as	direct	as	possible.	



Reliability	

Needless	cycles	and	reversals	ought	to	be	
avoided.	



Once	limi2ng	convergence	is	imposed,	cycle-
avoidance	is	equivalent	to	a	norm	of	change.		

Main	Thesis	



Both	necessitate	a	preference	for	simpler,	and	
more	falsifiable	theories.	

Main	Thesis	



1.	EMPIRICAL	PROBLEMS	



Informa2on	Spaces	

W w

E

•  W	is	a	set	of	possible	worlds.	
•  A	proposi2on	is	a	set	of	possible	worlds.	
•  					is	a	countable	set	of	proposi2onal	informa2on	
states.	
I

w



Axioms	on	Informa2on	
1.   Existence:	Each	world	makes	some	informa2on	state	true.	
2.   Cumula7vity:		Each	finite	conjunc2on	of	informa2on	states	

true	in	w	is	entailed	by	an	informa2on	state	true	in	w.	

W w

w

E

F



Ques2ons	

(Hamblin	1958)	

A0 A1 A2 A3

•  A	ques2on	par22ons	W	into	countably	many	possible	
answers																						.	

•  Relevant	responses	are	disjunc2ons	of	answers.	



Empirical	Problem	

A0 A1 A2 A3

P = (W, I,Q).

E F
w



Problem	Restric2on	

E

P



Problem	Restric2on	

E

P|E



2.	INFORMATION	TOPOLOGY	



Topology	

Rubber	geometry	



Topology	

Rubber	geometry	
	
	
	
	
Logic	of	verifica2on	(Kelly	1996,	Vickers	1996).	



Topology	and	Underdetermina2on	

The	bread,	which	I	formerly	ate,	nourished	
me	...	but	does	it	follow,	that	other	bread	
must	also	nourish	me	at	another	2me,	and	
that	like	sensible	quali2es	must	always	be	
aXended	with	like	secret	powers?	The	
consequence	seems	nowise	necessary	
(Enquiry	Concerning	Human	Understanding).		
	



Hume,	Topologized. 
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Hume,	Topologized. 



Interior	of	A	

Int	A		=	it	will	be	verified	that	A.	

Int	{					}	=	{					}			

Int	{					}	=								?



Open	=	Verifiable	
A	is	open		iff		A	entails	that	A	will	be	verified	
																			iff	A	entails	Int	A.	

Int	{					}	=	{					}			

Int	{					}	=								?



Closure	of	A	
Cl	A		=		A	will	never	be	refuted	
									=		not-A	will	never	be	verified	
									=		not	Int	not	A.	

Cl	{					}	=	{					,					}			

Cl	{					}	=	{					}							



Closed	=	Refutable	
A	is	closed		iff		not-A	entails	that	A	will	be	refuted	
																					iff		that	A	will	never	be	refuted	entails	A	
																					iff	Cl	A	entails	A.						

Cl	{					}	=	{					,					}			

Cl	{					}	=	{					}							



Fron2er	of	A	

Frntr	A		=		A	is	false,	but	will	never	be	refuted	
															=		Cl	A,	but	not	A.	

Frntr	{					}	=	{					}	

Frntr	{					}	=		?



Hume’s	Problem,	Enhanced.	

1	

2	
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Hume’s	Problem,	Enhanced.	

1	

2	 Frntr	{					}	=	{					}	

Frntr	{					}	=	{					}	1

Frntr	{					}	=		?1



Locally	Closed	
A	is	locally	closed		iff		Frntr	A	is	closed.	

1	

2	 open	

closed	

locally	closed	



Locally	Closed	
A	is	locally	closed		iff		A	entails	that	A	will	
become	refutable	(closed).	

1	

2	 open	

closed	

locally	closed	



3.	EMPIRICAL	SIMPLICITY	



A � B i↵ A ✓ clB

Simpler	=	More	Falsifiable	

A 

B 

i↵ all information compatible with A is compatible with B
i↵ all information refuting B also refutes A.

Sir	Karl	Popper	



The	“Tack-on”	Objec2on	

B 

•  Adding	complex	principles	to	a	theory	doesn’t	make	
it	simpler	(Glymour	1980).	

A



A � B i↵ A ✓ FrntrB.

but will never be refuted.

Improved		Defini2on	

i↵ A entails that B is false

A 

B 



Example:	Hume’s	Problem	



I = observation histories.
Q = Will every outcome be green?

Example:	Discrete	Outcomes	

closed	

open	Not	every	

Every	E w 



Q = Is the sharp null hypothesis true?

Example:	Real	Parameter	

I = open rectangular estimates.

closed	

open	Not	H0		

H0	

E 
w 



I = finitely many inexact measurements.

Example:	Con2nuous	Laws	
Q = Does Y = f(X) ?.

X

Y

f

closed	

open	Not	f	

f	



Q = How many parameters are free?

Example:	Parametric	Models	

locally	
closed	

locally	
closed	

closed	

1	

2	

0	

0	

1

1	

2	



Q = What is the true polynomial degree?

Example:	Quan2ta2ve	Laws	

I = finitely many inexact measurements.

degree	

Y = a0.

Y =
PN

i=0 aiX
i.

Y = a0 + a1X.
Y = a0 + a1X + a2X2.

.	.	.	
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Q = What is the true polynomial degree?
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X

Y
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closed	
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1	
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Example:	Compe2ng	Paradigms	

Y =

PN
i=0 ai sin(iX) + bi cos(iX).

Y =
PN
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Polynomial	paradigm	



Example:	Compe2ng	Paradigms	

Y =

PN
i=0 ai sin(iX) + bi cos(iX).

Y =
PN

i=0 aiX
i.

Trigonometric	polynomial	paradigm	

Polynomial	paradigm	

degree	



Example:	Compe2ng	Paradigms	

I = finitely many inexact measurements.

0	

2	

3	

0	

2	

3	

Q = which degree and which paradigm is true?

closed	

locally	
closed	

locally	
closed	

locally	
closed	

closed	

locally	
closed	

locally	
closed	

locally	
closed	

1	 1	



Tack-on	Redux	
•  There	is	something	wrong	with	tacking	a	complex	
answer	onto	a	simple	one.	

•  It	is	that	the	tack-on	conjunc2on	is	more	complex	
than	some	simpler	conjunc2on	(if	the	joint	ques2on	
is	natural).	

0	 0	

1	 1	

0	 0	

0	 1	 0	1	

1	 1	



4.	NATURAL	QUESTIONS	



The	Ques2on	Ques2on	

Ques2ons	guide	inquiry.	
What	makes	some	more	natural	than	others?	



Intransi2ve	Simplicity	

1	

0	

2	

3	

.	.	.	

1	

0	

2	

3	

.	.	.	

2	

0	

4	

6	

.	.	.	

3	

1	

5	

7	

.	.	.	

Even/	Odd	 Poly/	Trig	poly	



Remedy	

Proposi7on.		The	simplicity	rela2on	is	transi2ve	
if	every	answer	is	locally	closed.	
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Remedy	

Proposi7on.		The	simplicity	rela2on	is	transi2ve	
if	every	answer	is	locally	closed.	
	

Even/	Odd	 Poly/	Trig	poly	
0	

2	

3	

0	

2	

3	

0	

2	

3	

1	1	1	



Concealed	Simplicity	

0	1	 0	

Poly/Trig-poly	

	
	



Homogeneity	

	
	
If	any	part	of	answer	A	is	simpler	than	relevant	
response	B,	then	all	of	A	is	simpler	than	B.	
	

0	1	 0	

viola2on	

B	 A	



Homogeneity	

	
	

0	

1	

0	

fixed	

If	any	part	of	answer	A	is	simpler	than	relevant	
response	B,	then	all	of	A	is	simpler	than	B.	
	



Homogeneity	

Proposi7on.		Homogeneity	is	equivalent	to:	
the	disjunc2on	of	the	set	of	all	answers	
compa2ble	with	informa2on	E	is	verifiable.		

0	1	 0	

poly/trig-poly	

viola2on	
E 



Natural	Ques2ons	

A	ques2on	is	natural		in	a	problem	iff	
1.  Each	answer	is	locally	closed;	
2.  Each	answer	is	homogeneous.	
	
	
	



Natural	Ques2ons	

A	ques2on	is	natural		in	a	problem	iff	
1.  Each	answer	is	locally	closed;	
2.  Each	answer	is	homogeneous.	
	
	
	
	
In	algebraic	geometry,	natural	ques2ons	are	thought	of	
geometrically	as	stra2fica2ons	of	the	underlying	topology.	



Epistemic	Equivalence	

different	problems	

same	simplicity	structure	

X

Y

f

same	epistemological	structure	
natural	
problems	



5.	METHODS	AND	CONVERGENCE	



Induc2ve	Inference	

Input	informa2on	



Induc2ve	Inference	

Output	conclusion	



Induc2ve	Methods	

E M

Informa2on	in,	relevant	response	out.	

A0



Induc2ve	Methods	

Cleaner	diagram.	



Solu2on	in	the	Limit	

M	solves	a	problem	in	the	limit	iff	each	world	w	
presents	informa2on	such	that	M	produces	the	true	
answer	in	w	on	any	further	informa2on	true	in	w.	
	
	
	 Locking	

informa2on	
for	w.	

w	



Solu2on	in	the	Limit	

Locking	
informa2on	
for	w.	

w	

M	solves	a	problem	in	the	limit	iff	each	world	w	
presents	informa2on	such	that	M	produces	the	true	
answer	in	w	on	any	further	informa2on	true	in	w.	
	
	
	



i↵ M stabilizes to the true answer in each world

Solu2on	in	the	Limit	
M solves (W, I,Q) in the limit

i↵ (8w 2 W )(9E 2 Iw)(8F 2 Iw)(F ✓ E ) M(F ) = Qw).

Locking	
informa2on	
for	w.	

w	



Solvability	and	Topology	

Proposi7on	(Yamamoto	and	DeBrecht	2010,	Kelly	2004,	

Baltag,	Gierasimczuk	and	Smets	2015):			
A	problem	is	solvable	in	the	the	limit	iff	
each	answer	is	a	countable	disjunc2on	of	locally	
closed	proposi2ons.	



Solu2on	in	the	Limit	
•  Solu2on	in	the	limit	implies	no	constraint	on	what	to	
say	in	response	to	a	given	informa2on	state.	

•  Convergence	can	always	begin	later.	



7.	STRAIGHTEST	CONVERGENCE	



Two	Departures	from	Straightness	

Course-reversals	 Cycles	



Doxas2c	Reversal	Sequence	

•  A	finite	sequence	of	relevant	responses	in	
which	each	entry	contradicts	its	predecessor.	



Doxas2c	Cycle	Sequences	

•  A	reversal	sequence	whose	terminal	entry	
entails	its	first	entry.	



Cycle	Free	Solu2ons	

•  Solu2on	M is cycle free iff:	
	
There	exists	no	nested	sequence	of	informa2on	states		
	
	
such	that		
	
	
	
is	a	cycle	sequence.	

e = (Ei)
n
i=1

M(e) = (M(Ei))
n
i=1



Reversal	Sequence	Comparison	

•  Reversal	sequence	s	reverses	as	much	as	
reversal	sequence	s’	(of	the	same	length)	iff		
	 	each	entry	in	s	entails	the	corresponding	
	 	entry	in	s’.	

<
,	 ,	



Forcible	Reversal	Sequences	

•  Reversal	sequence	s is forcible	iff	every	
solu2on	to							performs	a	reversal	sequence	
s’	>	s.	

<
,	 ,	

P



Forcible	Sequences	

In	natural	problems,																	is	forcible	iff	
	
	

(Ai)
n
i=1

A1 � A2 � · · · � An�1 � An.



Forcible	Sequences	

In	general,																	is	forcible	iff	
	
	A1 \ Frntr(A2 \ Frntr(· · · \ Frntr(An�1 \ Frntr(An)))) 6= ?

(Ai)
n
i=1



Method	Comparison	

•  Solu2on	M’	reverses	as	much	as	solu2on	M	
iff:	
	For	each	reversal	sequence	generated	by	solu2on	M,		
	method	M’	generates	a	reversal	 	sequence	at	least		as	bad	
	in	some	world.	



Op2mal	Truth	Conduciveness	

•  Solu2on	M	is	reversal-op2mal	iff	every	
reversal	it	performs	is	forcible.	



6.	MINIMAL	CHANGE	



Condi2onaliza2on	

A	method	M	sa2sfies	condi2onaliza2on	iff	for	all	
informa2on	states	E,F:			

M(E) \Q(E \ F ) ✓ M(E \ F ).

In	slogan	form:		
	
	 	“no	induc7on	without	refuta7on.”	



Ra2onal	Monotony	

A	method	M	is	ra2onally	monotone	iff	
	
	
for	all	informa2on	states	E,F	such	that		
	
	
	
	

In	slogan	form:		
	
	 	“no	retrac7on	without	refuta7on.”	

M(E \ F ) ✓ M(E) \Q(E \ F ),

M(E) \Q(E \ F ) 6= ?.



Reversal	Monotony	

A	method	M	is	reversal	monotone	iff	
	
	
for	all	informa2on	states	E,F	such	that		
	
	
	
	

In	slogan	form:		
	
	 	“no	reversal	without	refuta7on.”	

M(E) \Q(E \ F ) 6= ?.

M(E \ F ) \M(E) 6= ?,



Theorem	

If	M	is	a	consistent	solu2on	to						,	then	M	cycle-
free	iff	M	is	reversal	monotone.	

P



The	Proof	Idea	



The	Proof	Idea	
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Theorem	

If	M	is	a	consistent	solu2on	to						,	then	M	is	
cycle-free	iff	M	is	reversal	monotone.	
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Theorem	

If	M	is	a	consistent	solu2on	to						,	then	M	is	
cycle-free	iff	M	is	reversal	monotone.	

P



7.	OCKHAM’S	RAZOR	



Simplest	Relevant	Responses	Given	E 

B	is	a	simplest	relevant	response	given	E	iff	any	
relevant	response	simpler	than	B is incompatible with 
E.	



Ockham’s Razor	


•  Output	a	simplest	relevant	response	given	E.	
–  Allows	for	suspension	of	judgment.	
–  Rules	out	“even”	in	co-finite	even/odd	problem.	
– Makes	sense	for	infinite	descending	chains.	

2	

3	

1	

0	

.	.	.	

2	

3	

1	

0	

.	.	.	



Popper’s Razor	


•  Output	a	relevant	response	that	is	refutable	
(closed)	in	the	problem	restricted	to	E.	



Error Razor	


•  “Err	on	the	side	of	simplicity”.	
•  In	arbitrary	world	w,	never	produce	a	relevant	
response	B	such	that	the	true	answer	Aw	is	
strictly	simpler	than	B.			

?	



Theorem	

For	natural	problems,	Ockham’s	Razor	=	Popper’s	
Razor.	

=	



Theorem	

In	general,	Popper’s	razor	is	stronger.	



Theorem	

If	M	is	a	cycle-free	solu2on,	then	M	is	
Popperian.	



Theorem	

If	M	is	a	cycle-free	solu2on,	then	M	is	
Popperian.	



The	Proof	Idea	



The	Proof	Idea	



The	Proof	Idea	



Theorem	

Every	natural	problem	has	a	cycle-free	solu2on	
(and	every	such	solu2on	is	Ockham).	



Equivalence	

Lemma	1:		Error	razor	implies	Popper’s	razor.	

Suppose	that	M	violates	Popper’s	razor	on	E.	
So	M(E)	isn’t	closed	given	E.	
Let	w	be	a	missing	boundary	point.	
So	{w}	is	simpler	than	M(E).	

w

E 
M(E) 

M(E) 

w



Equivalence	

Lemma	1:		Error	razor	implies	Popper’s	razor.	

w

w

E 
M(E) 

Suppose	that	M	violates	Popper’s	razor	on	E.	
So	M(E)	isn’t	closed	given	E.	
Let	w	be	a	missing	boundary	point.	
So	{w}	is	simpler	than	M(E).	
Apply	homogeneity.	
So	Aw	is	simpler	than	M(E).	

Aw	M(E) 

Aw	



Equivalence	

Lemma	2:		Popper’s	razor	implies	Ockham’s	razor.	

M(E) 
M(E) 

A	

A	

E 

Suppose	that	M	violates	Ockham’s	razor	on	E.	
So	some	A	compa2ble	with	E	is	simpler	than	M(E).	
	
	



Equivalence	

Lemma	2:		Popper’s	razor	implies	Ockham’s	razor.	

M(E) 
M(E) 

A	

A	

E 
w

w

Suppose	that	M	violates	Ockham’s	razor	on	E.	
So	some	A	compa2ble	with	E	is	simpler	than	M(E).	
Choose	w	to	witness	compa2bility.	
w	witnesses	that		is	not	closed	given	E.	
So	M	violates	Popper’s	razor	on	E.	
	
	



Equivalence	

Lemma	3:		Ockham’s	razor	implies	Error	razor.	

Suppose	that	M	violates	the	error	razor	in	w.	
So	w	presents	E	such	that	Aw	is	simpler	than	M(E).	
	
	

E 
M(E) 

M(E) 

w



Equivalence	

Lemma	3:		Ockham’s	razor	implies	Error	razor.	

Suppose	that	M	violates	the	error	razor	in	w.	
So	w	presents	E	such	that	Aw	is	simpler	than	M(E).	
Apply	homogeneity.	
So	Aw	is	simpler	than	M(E).	
That	is	an	Ockham	viola2on.	
	
	
	

E 
M(E) 

M(E) 

Aw	w

w



Patience	


•  Never	rule	out	a	simplest	relevant	response	given	E.	
–  Says	that	Ockham’s	razor	is	the	only	reason	for	induc2ve	
leaps	beyond	experience.	

–  Logically	independent	of	Ockham’s	razor.	

2	

3	

1	

0	

.	.	.	

Pa2ent	but	
not	Ockham	



Patience	


•  Never	rule	out	a	simplest	relevant	response	given	E.	
–  Says	that	Ockham’s	razor	is	the	only	reason	for	induc2ve	
leaps	beyond	experience.	

–  Logically	independent	of	Ockham’s	razor.	

Ockham	but	
not	pa2ent	



Normal	Science	vs.		
Revolu2onary	Science	

•  A	problem	is	normal	iff	the	disjunc2on	of	every	upward-
closed	set	of	answers	in	the	simplicity	order	is	verifiable.			

•  Else	it	is	revolu2onary.	

1	

0	

2	

3	

.	.	.	

1	

0	

2	

3	

.	.	.	

1	

0	

2	

3	

.	.	.	



Pa2ent	Learnability	

•  Proposi7on.	A	natural	problem	has	reversal-op2mal	
solu2on	iff	it	is	normal.	

•  Idea:		Just	suspend	judgment	un2l	some	answer	is	uniquely	
simplest.	

1	

0	

2	

3	

.	.	.	

1	

0	

2	

3	

.	.	.	



Revolu2onary	Ockham	Solu2ons	
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“Popper”:		
choose	the	
paradigm	
with	fewer	
free	
parameters.	
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Revolu2onary	Ockham	Solu2ons	

1	

0	

2	

3	

.	.	.	
1	

0	

2	

3	
.	.	.	

“Popper”:		
choose	the	
paradigm	
with	fewer	
free	
parameters.	

Lakatos:		
choose	the	
paradigm	that	
was	adjusted	
least	recently.	



Contextual	Jus2fica2on	

•  If	pa2ence	is	truth-conducive	in	your	problem,	
its	feasibility	in	some	other	problem	is	
irrelevant.	



In	normal	problems,	a	solu2on	is	reversal	
op2mal	iff	it	is	pa2ent.	

Theorem	



Summary	and	Discussion	
•  Simplicity	is	a	topological	feature	of	problems.	
•  Ockham’s	razor	is	necessary	for	cycle-op2mal	
convergence	to	the	true	answer.	

•  Pa2ence	is	necessary	for	reversal-op2mal	
convergence	to	the	true	answer.	

•  Op2mally	straight	convergence	is	weak,	but	its	
implica2ons	for	scien2fic	method	are	strong.	



9.	OCKHAM’S	STATISTICAL	RAZOR	



Noisy	Data	

•  How	do	the	preceding	results	extend	to	
stochas2c	theories?	

•  Every	theory	is	stochas2c	due	to	measurement	
error.	



Stats Wars

Frequen7sm	
•  (-)	No	induc2on	
•  (+)	Reliable	

Bayesianism	
•  (+)	Induc2on	
•  (-)	Unreliable	

Come	to	the	
coherence	side,	Luke,	
and	together	we	will	
believe	a	complete	

theory	of	the	
universe!	

Never!		Without	
reliability,	I’ll	just	
use	theories	for	

predic2on	without	
believing	them!	

Darth	Bayeser	 Luke	Es2mator	
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Frequen7sm	
•  (-)	No	induc2on	
•  (+)	Reliable	

Bayesianism	
•  (+)	Induc2on	
•  (-)	Unreliable	

Luke,	predic2ng	the	
results	of	novel	
policies	requires	
induc2ve	causal	
knowledge.				

Darth	Bayeser	 Luke	Es2mator	



Stats Peace

Frequen7st	theory	of	induc7ve	inference	
•  (+)	Induc2on	
•  (+)	Op2mal	induc2ve	reliability	
•  (+)	Bayesian	methods	are	an	op2on	

Darth	Bayeser	 Luke	Es2mator	



Short	Story	(awer	15	years)	
Everything	carries	over	very	nicely,	if	you	do	it	just	right.	
A	glance	at	how	it	is	done	follows.	



“In	Chance”	Transla2on	
Topology	
•  W	
•  Input	informa2on	
•  Method	
•  Topology	on	W	

•  Simplicity	

•  Convergence	
•  Reversals	
•  Ockham’s	razor	
•  Pa2ence	

Sta7s7cs	
•  A	set	of	probability	measures	
•  Random	(iid)	sample	XN 
•  A	measurable	func2on	MN	of	XN 
•  																																	is	con2nuous	

•  Simplicity	

•  Convergence	 	 	in	chance	
•  Reversals	 	 	 	in	chance	
•  Error	razor	 	 	in	chance	
•  Error	pa2ence	 	in	chance	

f(p) = p(XN 2 S)



Example	
•  Worlds:		bivariate	independent	normal	distribu2ons.	

µX

µY



Example	
•  Worlds:		bivariate	independent	normal	distribu2ons.	
•  Ques2on:		which	mean	components	are	non-zero?	

µX

µY



Example	
•  Worlds:		bivariate	independent	normal	distribu2ons.	
•  Ques2on:		which	mean	components	are	non-zero?	
•  Input:		sample	mean	vector	at	sample	size	N.	

X

Y



Example	
•  Method:		maps	possible	samples	to	answers.	

X

Y



	Informa2on	Topology	on	W	

The	informa2on	topology	on	W	is	the	weakest	topology	
for	which	the	func2on	

	
is	con2nuous	from	W	to	R,	for	arbitrary	N	and	Borel	
event	S	in	RN.				
	
Thus																																										is	con2nuous.	

f(p) = p(XN 2 S)

g(p) = p(MN = B)



ai := pi+1
i /pii.

Reversals	in	Chance	

Reversal	sequence:	

Sampling	distribu2on:							
Method:	

Ascending	sample	sizes:	

Output	chances:	

Pre-reversal	odds:	

Post-reversal	odds:	

Odds	differences:	

p
M
(A0, A1, A2)
(N0, N1, N2)

pij := pNj (M = Ai).

bi := pi+1
i+1/p

i
i+1.

di := bi �̇ ai.



di := (pii �̇ pii+1) �̇ (pi+1
i+1 �̇ pi+1

i ).

Reversals	in	Chance	
Reversal	sequence:	
Ascending	sample	sizes:	

(A0, A1, A2)
(N0, N1, N2)

pij := pNj (M = Ai).

“How	much	of	the	drop	in	chance	of	producing	Ai	can	be	
accounted	for	by	the	rise	in	chance	of		producing	Ai+1?”	

Drop	for	Ai Rise	for	Ai+1 



di := (pii �̇ pii+1) �̇ (pi+1
i+1 �̇ pi+1

i ).

Reversals	in	Chance	
Reversal	sequence:	
Ascending	sample	sizes:	

(A0, A1, A2)
(N0, N1, N2)

pij := pNj (M = Ai).

“How	much	of	the	drop	in	chance	of	producing	Ai	can	be	
accounted	for	by	the	rise	in	chance	of		producing	Ai+1?”	



di := (pii �̇ pii+1) �̇ (pi+1
i+1 �̇ pi+1

i ).

Reversals	in	Chance	
Reversal	sequence:	
Ascending	sample	sizes:	

(A0, A1, A2)
(N0, N1, N2)

pij := pNj (M = Ai).

“How	much	of	the	drop	in	chance	of	producing	Ai	can	be	
accounted	for	by	the	rise	in	chance	of		producing	Ai+1?”	



i↵ Ai ✓ A0
i, for i  2;

Reversals	in	Chance	Compared	

(A0, A1, A2)

d0 d1

(A0
0, A0

1, A0
2)

d00

reverses	as	
badly	as	

d01

di � d0i, for i < 2.



Comparison	with							Tolerance	

(A0, A1, A2)

d0 d1

(A0
0, A0

1, A0
2)

d00

reverses	as			
				-badly	as	

d01

↵

↵

i↵ Ai ✓ A0
i, for i  2;

di � d0i + ↵, for i < 2.



•  Solu2on	M’	reverses	as				-badly	as	solu2on	
M	iff:	
	For	each	reversal	sequence	generated	by	solu2on	M	at	
	some	p	and	sample	sizes,	
	method	M’	generates	a	reversal	sequence	at				
	some	p’	and	sample	sizes	that	reverses	as						-badly.	

	

•  Similarly	for	cycles.	
•  Strict	par2al	order,	for					>	0.	

Method	Comparison	

↵

↵

↵



Op2mal	Truth	Conduciveness	

•  Solu2on	M	is					reversal-op2mal	iff:	
	 	Each	solu2on	in	chance	reverses	as						-badly	as	M.	

	

•  Similarly	for						cycle-op2mality.	
	

↵
↵

↵



Error Razor	


•  “Err	on	the	side	of	simplicity”.	
•  In	arbitrary	world	w,	never	produce	a	relevant	
response	B	such	that	the	true	answer	Aw	is	
strictly	simpler	than	B.			



Equivalence	

Proposi7on.			In	natural	problems:	
Ockham’s	razor		=		Popper’s	razor		=		error	razor.	



Ockham’s					-Razor	↵
Violate	the	error	razor	with	at	most	chance				.	
If	Ap	is	properly	simpler	than	B,	then	

X

Y

p(MN = B) < ↵.

↵

viola2on	



Error patience	


•  In	arbitrary	world	w,	never	output	a	relevant	
response	that	rules	out	all	answers	as	simple	as	Aw.	



Equivalence	

•  Proposi7on:		Error	pa2ence	is	equivalent	to	pa2ence.	



-Pa2ence	
Violate	error	pa2ence	with	at	most	chance				.	
If	B	rules	out	every	answer	as	simple	as	Ap	,	then		

↵

X

Y

viola2on	

↵
p(MN = B) < ↵.



•  Proposi7on:		Every					-cycle	op2mal	solu2on	
in	chance	to	a	sta2s2cal	problem	sa2sfies	
Ockham’s					-	razor.	

↵

↵

↵

↵

Theorem	



Theorem	

•  Proposi7on:		Every					-reversal	op2mal	
solu2on	in	chance	to	a	sta2s2cal	problem	
sa2sfies				-pa2ence.	

↵

↵

↵

↵



-Pa2ent,					-Ockham	Solu2on	↵

X

Y

↵



-Pa2ent,					-Ockham	Solu2on	↵ ↵

X

Y

•  Power-op2mized	version	

Pa2ence	corners	



Fishing	with	Tests	
“Power”			=			get	the	unavoidable	reversals	over	with	as	
soon	as	possible	for	given						.	↵

X

Y

Pa2ence	corners	



•  Sta2s2cian’s	stooge	constructs	a	confidence	ball	E	and	reports	to	the	
theorist		the	sample	size	N	and	which	answers	are	logically	compa2ble	
with	E.	

•  Theorist	applies	the	logical	versions	of	Ockham’s	razor	and	pa2ence.	

Confidence	Intervals	as	Informa2on	

X

Y

Red,	Green,	Purple,	Blue,		
N	=	200	

E

Poiple!	

Stooge	 Theorist	



•  Sta2s2cian’s	stooge	constructs	a	confidence	ball	E	and	reports	
to	the	theorist	which	answers	are	logically	compa2ble	with	E.	

•  Apply	the	logical	versions	of	Ockham’s	razor	and	pa2ence.	

Confidence	Intervals	as	Informa2on	

X

Y



Confidence	Intervals	as	Informa2on	

X

Y

•  Sta2s2cian’s	stooge	constructs	a	confidence	ball	E	and	reports	
to	the	theorist	which	answers	are	logically	compa2ble	with	E.	

•  Apply	the	logical	versions	of	Ockham’s	razor	and	pa2ence.	



Confidence	Intervals	as	Informa2on	

X

Y

•  Sta2s2cian’s	stooge	constructs	a	confidence	ball	E	and	reports	
to	the	theorist	which	answers	are	logically	compa2ble	with	E.	

•  Apply	the	logical	versions	of	Ockham’s	razor	and	pa2ence.	



Confidence	Intervals	as	Informa2on	

X

Y

Reversal	sub-op2mal	due	to	impa2ence?	
Fishing	with	tests	may	be	beXer.	

Impa2ence?	



Simula2ons	
•  Method:		Minimize	BIC	score.	
•  20%	Ockham	viola2on	near	0,0.	
•  10%	impa2ence	near	0,0.	
•  Blue	zone	is	op2mized	against	small	errors	in	simplicity.	



Simula2ons	
•  Method:		Minimize	BIC	score.	
•  20%	Ockham	viola2on	near	0,0.	
•  10%	impa2ence	near	0,0.	
•  Blue	zone	is	op2mized	against	small	errors	in	simplicity.	



Bayes	
•  Method:		Maximize	Bayesian	credence,		
•  Even	priors	on	models,	Gaussian	priors	on	parameters.	
•  20%	Ockham	viola2on,	20%	impa2ence,	bad	power.	



Bayes	
•  Method:		Maximize	Bayesian	credence,		
•  Even	priors	on	models,	Gaussian	priors	on	parameters.	
•  20%	Ockham	viola2on,	20%	impa2ence,	bad	power.	



Bayes	
•  Method:		Maximize	Bayesian	credence,		
•  Prior	bias	toward	simplicity,	Gaussian	priors	on	parameters.	
•  7%	Ockham	viola2on,	7%	impa2ence,	bad	power.	



Plausible Advice	
•  Boost	the	prior	on	simple	models	to	eliminate						
cycles	in	chance.	

•  Then	op2mize	power	to	get	reversals	over	a.s.a.p.	

↵



Simula2ons	
•  Method:		Nested	BIC.	
	



Simula2ons	
•  Method:		Minimize	BIC.	



Bayes	with	Correla2on	
•  Method:		Maximize	Bayesian	credence,		
•  Prior	bias	toward	simplicity,	Gaussian	priors	on	parameters.	
•  40%	impa2ence,	bad	power.	



The	Power	of	Modesty	
•  Method:		95%	threshold	for	Bayes	Posterior	
•  Wai2ng	for	“confirming	data”	brings	reversals	in	chance	down	

to	around	5%.	



Ockham’s	Frequen2st	Razor	
•  Choose	powerful	nested	tests	at	significance						.	
•  Disjoin	the	simplest	models	whose	tests	do	not	reject.	

↵



Significance	and	Power	Reinterpreted	
•  “Significance”	=	tolerance	on	cycles	and	reversals	in	chance.	
•  “Power”	=	if	you	are	des2ned	to	drop	a	model,	get	it	over	

with	a.s.a.p.	



Simula2ons	
•  Method:		Nested	BIC	



Thanks for your patience!	




