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Synchronic norms of theory choice restrict the theories
one can choose in light of given, empirical information.



Norm of Choice: Ockham’s Razor

* Ockham: “Pluralitas non est ponenda sine neccesitate.”
e Science: “All else equal, prefer simpler theories.”
 Complexity:

— Free parameters

— Multiple mechanisms

— Coincidences

— Ad hoc hypotheses




Norm of Choice: Popper’s Dictum

* Popper: “All else equal, prefer more falsifiable theories.”




Reconstruction vs. Reliability

Rational Reconstruction

* |Isthe simpler theory more
plausible?

e Can prior probabilities
encode that preference?
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Reconstruction vs. Reliability

Is the simpler theory more .
plausible?

Can prior probabilities
encode that preference?
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Reliability

Does favoring the simpler
theory lead one to the truth
better than alternative

strategies?



Rational Reconstruction

Reconstruction vs. Justification

Is the simpler theory more .
plausible?

Can prior probabilities
encode that preference?
Of course!

Reliability

Does favoring the simpler
theory lead one to the truth
better than alternative

strategies?

How could you show that,
without assuming that the
world is simple?
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Diachronic norms of theory change govern how one should
change one’s current beliefs, in light of new information.



Norm of Minimal Change

Alchourron, Gardenfors, Makinson:

To rationally accommodate new evidence, one ought to (1)
add only those new beliefs, and (2) remove only those old

beliefs, that are absolutely compelled by incorporation of new
information.
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How are the norms of change related to the norms of choice?



norms p norms
of choice of change

It is a strange coincidence that the philosophy of science
has focussed on the monadic (nonrelational) features of
theory choice, while philosophical logic has emphasized
the dyadic (relational) features of theory change. | believe
that it is time for researchers in both fields to overcome
this separation and work together on a more
comprehensive picture (Rott, 2000, p. 15).
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Epistemic justification consists in showing that the norms
are, in some sense, reliable, or truth-conducive.



Traditionally, truth-conduciveness has been too strictly
conceived:



Traditionally, truth-conduciveness has been too strictly
conceived:

“...justifying an epistemic principle requires
answering an epistemic question: why are
parsimonious theories more likely to be
true?” (Baker, 2013)



When your standards are too high, you are led either to
metaphysics,

“Nature is pleased with simplicity, and affects not the
pomp of superfluous causes” (Newton et al., 1833).



.. or despair.

“INJo one has shown that any of these rules is more
likely to pick out true theories than false ones. It
follows that none of these rules is epistemic in
character” (Laudan, 2004).



Truth Conduciveness: Too Strong

* Theoretical virtues do not indicate the truth
the way litmus paper indicates pH.

* Inductive inferences made in accordance with
the rationality principles are still subject to
arbitrarily high chance of error.



Truth Conduciveness: Too Strong

We can make progress if we don’t demand the
impossible:

“The fact that the truth of the predictions
reached by induction cannot be guaranteed
does not preclude a justification in a weaker
sense” (Carnap, 1945).



Truth Conduciveness: Too Weak

* Truth-indicativeness is too strong a standard.
But mere convergence to the truth in the limit
is too weak to mandate any behavior in the

short run.

“Reichenbach is right ... that any procedure, which does not
[converge in the limit] is inferior to his rule of induction.
However, his rule ... is far from being the only one possessing
that characteristic. The same holds for an infinite number of
other rules of induction. ... Therefore we need a more general
and stronger method for examining and comparing any two
given rules of induction ...” (Carnap, 1945)



Truth Conduciveness: Just Right

Truth-

Indicative ? g

In the limit

Is there something in between?
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* Non-ampliative

* Infallible

* Monotonic




Reasoning

Deductive Reasoning Inductive Reasoning
* Non-ampliative  Ampliative
* Infallible * Fallible

* Monotonic * Non-monotonic
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Deductive Reliability

* Converge to the truth
directly

 |nformation determines the
right answer




Reliability

Deductive Reliability Inductive Reliability
e Converge to the truth * Converge to the truth
directly indirectly

* Information determinesthe ¢ Anything goes in the short
right answer run.




Reliability

Deductive Reliability Optimal Inductive Reliability
e Converge to the truth * Converge to the truth as
directly directly as possible.

* Information determines the ¢ Implies strong short-run
right answer norms. E.g....




Reliability

Pursuit of truth ought to be as direct as possible.

\




Reliability

Needless cycles and reversals ought to be
avoided.

——

s




Main Thesis
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Once limiting convergence is imposed, cycle-
avoidance is equivalent to a norm of change.



Main Thesis
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Both necessitate a preference for simpler, and
more falsifiable theories.



1. EMPIRICAL PROBLEMS



Information Spaces

 Wis aset of possible worlds.
* A proposition is a set of possible worlds.

e 7 is acountable set of propositional information
states.




Axioms on Information

1. Existence: Each world makes some information state true.

2. Cumulativity: Each finite conjunction of information states
true in wis entailed by an information state true in w.




Questions

* A question partitions ¥ into countably many possible
answers (Hamblin 1958).

* Relevant responses are disjunctions of answers.




Empirical Problem

T = (W, Z,Q).




Problem Restriction




Problem Restriction
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2. INFORMATION TOPOLOGY



Topology

Rubber geometry

SDHOU




Topology

Logic of verification (kelly 1996, vickers 1996).



Topology and Underdetermination

The bread, which | formerly ate, nourished
me ... but does it follow, that other bread
must also nourish me at another time, and
that like sensible qualities must always be
attended with like secret powers? The
consequence seems Nowise necessary
(Enquiry Concerning Human Understanding).



Hume, Topologized.
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Hume, Topologized.




Interior of 4

Int A =it will be verified that A4.
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Open = Verifiable
A is open iff A entails that 4 will be verified
iff A entails Int 4.




Cl A4

Closure of 4

A will never be refuted
not-4 will never be verified
not Int not A4.




Closed = Refutable

A is closed iff not-4 entails that 4 will be refuted
iff that 4 will never be refuted entails 4
iff Cl 4 entails A.




Frontier of 4

Frntr A = A is false, but will never be refuted
= Cl 4, but not 4.

Frntr {2} ={"}
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Hume’s Problem, Enhanced.
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Hume’s Problem, Enhanced.

Frntr {70} = {@

{1

Frntr {0}




Hume’s Problem, Enhanced.




Locally Closed

A is locally closed iff Frntr A4 is closed.

open

locally closed

closed




Locally Closed

A is locally closed iff 4 entails that 4 will
become refutable (closed).

open

locally closed

closed




3. EMPIRICAL SIMPLICITY



Simpler = More Falsifiable
A< Biff ACclB

iIff all information compatible with A is compatible with B
iff all information refuting B also refutes A.

Sir Karl Popper



The “Tack-on” Objection

* Adding complex principles to a theory doesn’t make
it simpler (Glymour 1980).




Improved Definition

A< B iff A C FrntrB.

Iff A entails that B is false
but will never be refuted.




Example: Hume’s Problem




Example: Discrete Outcomes

Q = Will every outcome be green?

1 = observation histories.

open

closed




Example: Real Parameter

Q = Is the sharp null hypothesis true?
7 = open rectangular estimates.

open

closed



Q=DoesY = f(X) 7.

Example: Continuous Laws

7 = finitely many inexact measurements.

Y

_____

open

closed



Example: Parametric Models

Q = How many parameters are free?

locally
closed

locally
closed

closed



Example: Quantitative Laws

Q = What is the true polynomial degree?

7 = finitely many inexact measurements.

<<

degree
N 0
ag.
ag + a1 X.
aog T CL1X -+ CL2X2.
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Q = What is the true polynomial degree?
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Y
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locally
closed

closed



Example: Competing Paradigms

Polynomial paradigm
Y =30 a; X7

Trigonometric polynomial paradigm
Y = fo\;o a;sin(iX ) + b; cos(2.X).




Example: Competing Paradigms

Polynomial paradigm
Y =38 a; X7

degree
Trigonometri€ polynomial paradigm
Y = fo\;o a;sin(iX ) + b; cos(2.X).




Example: Competing Paradigms

Q = which degree and which paradigm is true?
7 = finitely many inexact measurements.

locally locally
closed closed
IOca”y IOca”y ﬂl‘m n’ fU‘m A{ll n-ﬁﬂ nn
closed closed AT WYY
locally locally
closed closed

closed closed




Tack-on Redux

* There is something wrong with tacking a complex
answer onto a simple one.

* Itis that the tack-on conjunction is more complex
than some simpler conjunction (if the joint question
is natural).




4. NATURAL QUESTIONS



The Question Question

Questions guide inquiry.
What makes some more natural than others?



Intransitive Simplicity

Even/ Odd Poly/ Trig poly



Remedy

Proposition. The simplicity relation is transitive
if every answer is locally closed.

Even/ Odd Poly/ Trig poly



Remedy

Proposition. The simplicity relation is transitive
if every answer is locally closed.

Even/ Odd Poly/ Trig poly



Concealed Simplicity

B I

Poly/Trig-poly



Homogeneity

If any part of answer 4 is simpler than relevant
response B, then all of A is simpler than B.

-1

B A

violation



Homogeneity

If any part of answer 4 is simpler than relevant
response B, then all of A is simpler than B.

fixed



Homogeneity

Proposition. Homogeneity is equivalent to:

the disjunction of the set of all answers
compatible with information E is verifiable.

O T

poly/trig-poly




Natural Questions

A question is natural in a problem iff
1. Each answer is locally closed;
2. Each answer is homogeneous.



Natural Questions

A question is natural in a problem iff
1. Each answer is locally closed;
2. Each answer is homogeneous.

In algebraic geometry, natural questions are thought of
geometrically as stratifications of the underlying topology.



Epistemic Equivalence

different problems

natural ( same simplicity structure

problems same epistemological structure
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5. METHODS AND CONVERGENCE



Inductive Inference




Inductive Inference




Inductive Methods

Information in, relevant response out.




Inductive Methods

Cleaner diagram.




Solution in the Limit

M solves a problem in the limit iff each world w
presents information such that M produces the true
answer in w on any further information true in w.

Locking
information
for w.




Solution in the Limit

M solves a problem in the limit iff each world w
presents information such that M produces the true
answer in w on any further information true in w.

Locking
information
for w.




Solution in the Limit
M solves (W, Z, Q) in the limit

Iff M stabilizes to the true answer in each world
iff (Vwe W) 3EFE e€Zy,)(VF €Zy,)(F CE=MUF)= Q).

Locking
information
for w.




Solvability and Topology

Proposition (Yamamoto and DeBrecht 2010, Kelly 2004,
Baltag, Gierasimczuk and Smets 2015):

A problem is solvable in the the limit iff

each answer is a countable disjunction of locally
closed propositions.



Solution in the Limit

e Solution in the limit implies no constraint on what to
say in response to a given information state.

* Convergence can always begin later.




norms norms
of choice of change

reliability

7. STRAIGHTEST CONVERGENCE



Two Departures from Straightness

F

Course-reversals



Doxastic Reversal Sequence

* A finite sequence of relevant responses in
which each entry contradicts its predecessor.




Doxastic Cycle Sequences

* Areversal sequence whose terminal entry
entails its first entry.




Cycle Free Solutions

* Solution M is cycle free iff:

There exists no nested sequence of information states

€ = (Ei)?:1

M(e) = (M(E;))izy

is a cycle sequence.



Reversal Sequence Comparison

* Reversal sequence s reverses as much as
reversal sequence s’ (of the same length) iff

each entry in s entails the corresponding
entry in s’.

(. < (]




Forcible Reversal Sequences

* Reversal sequence s 1s forcible 1ff every
solution to I3 performs a reversal sequence
s’>s.

(. < (]




Forcible Sequences

In natural problems,(Ai)?’zl is forcible iff

Al <Ay <--- <A, 1< A,.



Forcible Sequences

n

In general, (Az')@':l is forcible iff

A1 NFrntr(As N Frntr(--- N Frntr(A,—1 N Frntr(A,)))) # @



Method Comparison

e Solution M’ reverses as much as solution M
iff:
For each reversal sequence generated by solution /7,

method M’ generates a reversal sequence at least as bad
in some world.



Optimal Truth Conduciveness

e Solution M is reversal-optimal iff every
reversal it performs is forcible.
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6. MINIMAL CHANGE



Conditionalization

A method M satisfies conditionalization iff for all
information states E,F:

ME)NQOENF)C M(ENF).
In slogan form:

“no induction without refutation.”



Rational Monotony

A method M is rationally monotone iff
M(ENF)C M(E)nQ(ENF),

for all information states E,F such that

M(E)NQ(ENF) + @.

In slogan form:

“no retraction without refutation.”



Reversal Monotony
A method M is reversal monotone iff
M(ENF)NM(E) # o,
for all information states E,F such that

M(EYNQ(ENF) + @.

In slogan form:

“no reversal without refutation.”



Theorem

If M is a consistent solution to 33, then M cycle-
free iff M is reversal monotone.



The Proof Idea
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The Proof Idea




Theorem

If M is a consistent solution to ‘B, then M is
cycle-free iff M is reversal monotone.

conditionalizer rationally monotone

L 2 4

reversal monotone

$

cycle-free



Theorem

If M is a consistent solution to ‘B, then M is
cycle-free iff M is reversal monotone.
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7. OCKHAM’S RAZOR



Simplest Relevant Responses Given £

B is a simplest relevant response given E iff any
relevant response simpler than B 1s incompatible with
E.



T Ockham’s Razor

* QOutput a simplest relevant response given E.
— Allows for suspension of judgment.
— Rules out “even” in co-finite even/odd problem.
— Makes sense for infinite descending chains.




Cﬁqﬁ]aer’s Razor

-/

e QOutput a relevant response that is refutable
(closed) in the problem restricted to E.




Frror ‘Razor

* “Err on the side of simplicity”.

* |n arbitrary world w, never produce a relevant
response B such that the true answer 4, is
strictly simpler than B.

—



Theorem

For natural problems, Ockham’s Razor = Popper’s
Razor.




Theorem

In general, Popper’s razor is stronger.




Theorem

If M is a cycle-free solution, then M is
Popperian.

conditionalizer rationally monotone

L 2 4

reversal monotone

$

cycle-free

4

Ockham/Popperian



Theorem

If M is a cycle-free solution, then M is
Popperian.
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The Proof Idea
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The Proof Idea




Theorem

Every natural problem has a cycle-free solution
(and every such solution is Ockham).



Equivalence

Lemma 1: Error razor implies Popper’s razor.

Suppose that M violates Popper’s razor on E.
So M(E) isn’t closed given E.

Let w be a missing boundary point.
So {w} is simpler than M(E).

M(E)




Equivalence

Lemma 1: Error razor implies Popper’s razor.

Suppose that M violates Popper’s razor on E.
So M(E) isn’t closed given E.

Let w be a missing boundary point.
So {w} is simpler than M(E).
Apply homogeneity.

So A4, is simpler than M(E).

M(E)




Equivalence

Lemma 2: Popper’s razor implies Ockham’s razor.

Suppose that M violates Ockham’s razor on £.
So some A compatible with E is simpler than M(E).

M(E)




Equivalence

Lemma 2: Popper’s razor implies Ockham’s razor.

Suppose that M violates Ockham’s razor on £.

So some A compatible with E is simpler than M(E).
Choose w to witness compatibility.

w witnesses that is not closed given E.

So M violates Popper’s razor on E. E

M(E)

A



Equivalence

Lemma 3: Ockham’s razor implies Error razor.

Suppose that M violates the error razor in w.
So w presents E such that 4 is simpler than M(E).

M(E)




Equivalence

Lemma 3: Ockham’s razor implies Error razor.

Suppose that M violates the error razor in w.

So w presents E such that 4 is simpler than M(E).
Apply homogeneity.

So A4, is simpler than M(E).
That is an Ockham violation.

M(E)




T Patience

U

Never rule out a simplest relevant response given E.

— Says that Ockham’s razor is the only reason for inductive
leaps beyond experience.

— Logically independent of Ockham’s razor.

Patient but
not Ockham




T Patience

U

* Never rule out a simplest relevant response given E.

— Says that Ockham’s razor is the only reason for inductive
leaps beyond experience.

— Logically independent of Ockham’s razor.

Ockham but

not patient . .




Normal Science vs.
Revolutionary Science

* A problem is normal iff the disjunction of every upward-
closed set of answers in the simplicity order is verifiable.

* Elseitis revolutionary.




Patient Learnability

Proposition. A natural problem has reversal-optimal
solution iff it is normal.

Idea: Just suspend judgment until some answer is uniquely
simplest.




Revolutionary Ockham Solutions

“Popper”:
choose the
paradigm
with fewer
free
parameters.
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free - . least recently.
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parameters. '
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Contextual Justification

* |f patience is truth-conducive in your problem,
its feasibility in some other problem is
irrelevant.



Theorem

In normal problems, a solution is reversal
optimal iff it is patient.




Summary and Discussion

Simplicity is a topological feature of problems.

Ockham’s razor is necessary for cycle-optimal
convergence to the true answer.

Patience is necessary for reversal-optimal
convergence to the true answer.

Optimally straight convergence is weak, but its
implications for scientific method are strong.



9. OCKHAM'’S STATISTICAL RAZOR



Noisy Data

* How do the preceding results extend to
stochastic theories?

* Every theory is stochastic due to measurement
error.




Stats IVars

Bayesianism Frequentism

* (+) Induction * (-) No induction

e (-) Unreliable * (+) Reliable

4 N

coherence reliability
use
believe orediction

believing them!
universel!

Darth Bayeser Luke Estimator
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Bayesianism Frequentism

* (+) Induction * (-) No induction
e (-) Unreliable * (+) Reliable

/

novel
policies
inductive causal

‘Darth Bayeser Luke Estimator



Stats Peace

Frequentist theory of inductive inference

Darth Bayeser Luke Estimator



Short Story (after 15 years)

Everything carries over very nicely, if you do it just right.
A glance at how it is done follows.




“In Chance” Translation

Topology Statistics

e W * A set of probability measures

* Inputinformation < Random (iid) sample X,

* Method * A measurable function M, of X,

* Topology on W f(p) = p(Xy € S) is continuous

* Simplicity * Simplicity

 Convergence  Convergence in chance
e Reversals e Reversals in chance
e Ockham’s razor * Error razor in chance

* Patience * Error patience in chance



Example

* Worlds: bivariate independent normal distributions.
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* Worlds: bivariate independent normal distributions.
* Question: which mean components are non-zero?
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Example

* Worlds: bivariate independent normal distributions.
* Question: which mean components are non-zero?

* Input: sample mean vector at sample size V.

Y




Example

* Method: maps possible samples to answers.

Y




Information Topology on W

The information topology on W is the weakest topology
for which the function

f(p) =p(Xn €5)

is continuous from W to R, for arbitrary N and Borel
event Sin RV.

Thus ¢(p) = p(My = B) is continuous.



Reversals in Chance

Sampling distribution: p
Method: M
Reversal sequence:

Ascending sample sizes: (No, Ny, Nz)

Output chances: pé- = DN, (M = A;).
Pre-reversal odds: a; = ptt/pl.
Post-reversal odds: b; = pzi%/pwrl.

Odds differences: d; = b, — a,.



Reversals in Chance

Reversal sequence: (Ag, A1, As)
Ascending sample sizes:  (Ng, N1, No)

“How much of the drop in chance of producing 4, can be
accounted for by the rise in chance of producing 4,,,?”

h J

p; = pn,(M =4;). |
d; = (pi — p§+1) — (pZﬁ - piﬁ-“).
Drop for 4, Rise for 4.,
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Reversals in Chance

Reversal sequence: (Ag, A1, As)
Ascending sample sizes:  (Ng, N1, No)

“How much of the drop in chance of producing 4, can be
accounted for by the rise in chance of producing 4,,,?”

O

p; = pn,(M =4;). |
d; = (pi — p§+1) — (p;‘ii - piﬁ-“).




Reversals in Chance Compared

(A07 Al, AQ) reverses as (1467 A/lv A/Z)
badly as
d() dl d6 d/l

iff A; C A7, for i < 2;
d; > d., for i < 2.



Comparison with & Tolerance

(A07 Al, AQ) reverses as (1467 A/lv A/Z)
« -badly as
d() dl d6 d/l

iff A; C A7, for i < 2;
d; > d, + «, for i < 2.



Method Comparison

e Solution M’ reverses as «-badly as solution
M iff:
For each reversal sequence generated by solution A/ at
some p and sample sizes,

method M’ generates a reversal sequence at
some p” and sample sizes that reverses as «-badly.

* Similarly for cycles.
 Strict partial order, for a > 0.



Optimal Truth Conduciveness

e Solution M is a reversal-optimal iff:

Each solution in chance reverses as «-badly as M.

e Similarly for « cycle-optimality.



Frror ‘Razor

* “Err on the side of simplicity”.

* |n arbitrary world w, never produce a relevant
response B such that the true answer 4, is
strictly simpler than B.



Equivalence

Proposition. |n natural problems:
Ockham’s razor = Popper’s razor = error razor.



Ockham’s «-Razor

Violate the error razor with at most chance «.
Ipr is properly simpler than B, then p(My = B) < a.

Y




T Lrror patience
] :

* In arbitrary world w, never output a relevant
response that rules out all answers as simple as 4.




Equivalence

* Proposition: Error patience is equivalent to patience.



a-Patience

Violate error patience with at most chance o
If B rules out every answer as simple as 4,,, then p(My = B) < a.

Y




| Theorem

* Proposition: Every «a-cycle optimal solution
in chance to a statistical problem satisfies
Ockham’s «a-razor.




| Theorem

* Proposition: Every «a-reversal optimal
solution in chance to a statistical problem
satisfies a-patience.




« -Patient, a-Ockham Solution




o -Patient, a-Ockham Solution
* Power-optimized version

Y




Fishing with Tests

“Power” = get the unavoidable reversals over with as
soon as possible for given .

Y




Confidence Intervals as Information

e Statistician’s stooge constructs a confidence ball £ and reports to the
theorist the sample size N and which answers are logically compatible
with E.

* Theorist applies the logical versions of Ockham’s razor and patience.

Y

Red, Green, Purple, Blue,
N=200

Theorist
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Confidence Intervals as Information

 Statistician’s stooge constructs a confidence ball £ and reports
to the theorist which answers are logically compatible with E.

* Apply the logical versions of Ockham’s razor and patience.

Y




Confidence Intervals as Information

Reversal sub-optimal due to impatience?
Fishing with tests may be better.

Y




Simulations
Method: Minimize BIC score.
20% Ockham violation near 0,0.
10% impatience near 0,0.
Blue zone is optimized against small errors in simplicity.
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Simulations

Method: Minimize BIC score.
20% Ockham violation near 0,0.
10% impatience near 0,0.

Blue zone is optimized against small errors in simplicity.
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Bayes

* Method: Maximize Bayesian credence,
* Even priors on models, Gaussian priors on parameters.

e 20% Ockham violation, 20% impatience, bad power.
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Bayes

* Method: Maximize Bayesian credence,
* Even priors on models, Gaussian priors on parameters.

e 20% Ockham violation, 20% impatience, bad power.
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Bayes

* Method: Maximize Bayesian credence,
* Prior bias toward simplicity, Gaussian priors on parameters.

* 7% Ockham violation, 7% impatience, bad power.

(0.0402488)
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Plausible Aduice

* Boost the prior on simple models to eliminate «
cycles in chance.

* Then optimize power to get reversals over a.s.a.p.



Simulations

* Method: Nested BIC.
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Simulations
e Method: Minimize BIC.
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Bayes with Correlation

Method: Maximize Bayesian credence,
Prior bias toward simplicity, Gaussian priors on parameters

* 40% impatience, bad power.
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The Power of Modesty

* Method: 95% threshold for Bayes Posterior

* Waiting for “confirming data” brings reversals in chance down
to around 5%.
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Ockham’s Frequentist Razor

Choose powerful nested tests at significance (v .
Disjoin the simplest models whose tests do not reject.
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Significance and Power Reinterpreted

* “Significance” = tolerance on cycles and reversals in chance.

* “Power” = if you are destined to drop a model, get it over
with a.s.a.p.
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Simulations
e Method: Nested BIC
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Thanks for your ]oau’ence!




