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Critics of Randomization

Randomization has come in for criticism on purely epistemic grounds.

e Bayesians have a hard time rationally reconstructing randomization
(Savage 1961,1962; Kadane & Seidenfeld, 1999; Kasy 2016).

e The frequentist theory of optimal design of experiments does not endorse
randomization (Kiefer 1959; Harville 1975).

e Philosophers of science have criticized the coherence of randomization
(Urbach 1985; Worrall 2002).



Randomization On its Own Terms

What is the best frequentist justification for randomization?

A standard answer: Randomization guarantees the existence of an unbiased
estimator of average treatment effect.



Our critique

1. Non-trivial randomization is not necessary for unbiased estimation of ATE.

2. Not sufficient for unbiased estimation of other quantities e.g., the median or
minimum causal effect. (No design guarantees unbiased estimation)

3. Unbiasedness is not always a good to be sought:

a. Unbiased estimates may be incompatible with what is known from data or what is assumed by
the model.

b. Unbiased estimators are often inadmissible (i.e., weakly dominated) not matter one’s loss
function.



Our proposal

Minimax foundations demonstrating that randomized designs (which ones?)
minimize worst case loss (in what sense?) at finite samples.
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Absence of Unbiased Estimates for Other Quantities
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Absence of Unbiased Estimates for Other Quantities

Note: If the outcome variable is only ordinal-scaled, comparisons of the ATEs of
different interventions depend on the measurement unit.

E.g. scholarships could appear better than counseling if you measure the number
of college courses that are completed, but they might appear worse if you
measure number of semesters completed.



Absence of Unbiased Estimates for Other Quantities

Theorem (Conor).

There are no unbiased estimators for the p" percentile, which is the least value x
such that at least p percent of the population is below x.
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Inverse Propensity Score Weighting

Suppose you want to estimate patient i's response to treatment Y(1). An unbiased
estimator is given by:

WY=%T=ﬂ={UFyT“_1

0 if = ()

Suppose p = 1/2. As things turn out, patient i is treated (T = 1) and survives four
months past treatment. So it is known that Y (1) = 4. But the estimate for Y(1) is
eight months, i.e., that we estimate that, if she were treated (which she was!), then
patient i would survive twice as long as she actually did. Unbiased estimates may
be incompatible with observation!



Inverse Propensity Score Weighting

This is a special case of a general phenomenon: when parameter spaces are
bounded, unbiased estimation requires over(under)shooting known bounds.
Unbiased estimators are dominated by estimators that cut-off at the known
bounds.

“‘inadmissibility of unbiased estimators is likely to be the rule, rather than the
exception” (Berger, 1989).

Berger, James O. (1989) “On the Inadmissibility of Unbiased Estimators.”
Statistics and Probability Letters. 9(5): pp. 381-4.
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The Causal Situation

T .= treatment (binary);

E := effect (binary); I
M := measured covariates:

U := unmeasured covariates;

| := randomizer.




Average Treatment Effect

The goal is to estimate the
average treatment effect (ATE):

P(E = 1|do(T = 1)) — P(E = 1|do(T = 0))

Or, in the notation of the potential outcomes framework:

%Z P(EFt=1) - P(EFFY = 1)

)
1<n



Trouble with Observational Studies

If there is an unobserved common cause of T, E
it is easy to come up with examples in which the ATE
is not identified.
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The Point of Randomization

Randomization “breaks edges” into treatment, so that
any association between T and E is due to the causal
effect of T on E and not shared common causes. \

T




The Point of Randomization

It ensures that the ATE is identified and equal to

7 7 /
P(E = 1T =1)— P(E = 1T = 0) ~

Moreover an unbiased estimate of the ATE is easily
obtained.
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The Point of Randomization

“In ideal randomized experiments, association is /

causation” ~




No Other Way?

So is randomization the only way to render the ATE /
identified and construct unbiased estimates? \




No Other Way?

So is randomization the only way to render the ATE /
identified and construct unbiased estimates? \

No!




Instrumental Variables

| is an instrumental variable if (roughly)

e |is statistically independent of U,M;

e the only unblocked path from / to E goes
through T

(a path is blocked if it contains a sequence like




Instrumental Variables

Suppose that

e physicians assign patients to treatment
according to their therapeutic judgement

e and only consult a randomizing device ( /)
when they are in equipoise

then / is an instrumental variable.




Instrumental Variables

Theorem (Angrist and Imbens 1995): When an
instrumental variable satisfies a “monotonicity”
condition, then the ATE is identified and there is an
unbiased estimator of the ATE.
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Backdoor Adjustment

M satisfied the backdoor criterion w.r.t (7, E) if

e M is not a descendant of T;

e M Dblocks every path between T and E that has
an arrow into T.



Backdoor Adjustment

Theorem (Pearl, 1993) If there is observed variable
Z satisfying the backdoor criterion wrt (7, E), then it
is possible to construct an unbiased estimate of the
causal effect of T on E.




Backdoor Adjustment

Suppose that

e physicians make assignment to treatment only
on the basis of observed covariates M,

then M satisfies the backdoor criterion wrt (7, E).
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Randomization On its Own Terms

Neither guaranteeing that

1. the ATE is identified, nor that
2. there exists an unbiased estimator of the ATE,

is sufficient to justify randomization.

Other designs get the same goods and are less hostile to individualized treatment.



Randomization On its Own Terms

The usual story establishes
1. the superiority of (quasi)experimental designs over observational designs;
but not

2. the superiority of randomized experimental designs over other experimental
designs.



Randomization On its Own Terms

If there is a frequentist argument justifying randomization over other methods, it
cannot be framed in terms of identifiability or unbiasedness of estimates.

It must be about efficiency.

|.e. the variance of the estimator.



Randomization On its Own Terms

Are there such arguments?



Randomization On its Own Terms

Are there such arguments?

There are definitely no dominance arguments: if you know that the disease is
fatal without treatment, the variance-minimizing estimator of the ATE assigns
everyone to treatment.
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There are definitely no dominanc
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everyone to treatment.

©88 opeN ACCESS

M) Check for updates

*Richard A and Susan F Smith
Center for Outcomes Research
in Cardiology, Beth Israel
Deaconess Medical Center,
Harvard Medical School, 375
Longwood Avenue, Boston, MA
02215, USA

*David Geffen School of
Medicine, University of
California, Los Angeles, CA, USA
“Department of Emergency
Medicine, University of
Michigan and Saint Joseph
Hospital, Ann Arbor, MI, USA
“Michigan Integrated Center
for Health Analytics and

RESEARCH

Parachute use to prevent death and major trauma when jumping
from aircraft: randomized controlled trial
Robert W Yeh,” Linda R Valsdottir," Michael W Yeh,? Changyu Shen,' Daniel B Kramer,"

Jordan B Strom,! Eric A Secemsky,’ Joanne L Healy,! Robert M Domeier,” Dhruv S Kazi,*
Brahmajee K Nallamothu* On behalf of the PARACHUTE Investigators

ABSTRACT

OBJECTIVE

To determine if using a parachute prevents death or
major traumatic injury when jumping from an aircraft.
DESIGN

Randomized controlled trial.

SETTING

Private or commercial aircraft between September
2017 and August 2018.

PARTICIPANTS

92 aircraft passengers aged 18 and over were
screened for participation. 23 agreed to be enrolled
and were randomized
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INTERVENTION

Jumping from an aircraft (airplane or helicopter) with a
parachute versus an empty backpack (unblinded).
MAIN OUTCOME MEASURES

Composite of death or major traumatic injury (defined
by an Injury Severity Score over 15) upon impact with
the ground measured immediately after landing.
RESULTS

Parachute use did not significantly reduce death

or major injury (0% for parachute v 0% for control;
P»0.9). This finding was consistent across multiple
subgroups. Compared with individuals screened but

regarding the effectiveness of an intervention exist in
the community, randomized trials might selectively
enroll individuals with a lower perceived likelihood
of benefit, thus diminishing the applicability of the
results to clinical practice.

Introduction
Parachutes are routinely used to prevent death or major
traumatic injury among individuals jumping from
aircraft. However, evidence supporting the efficacy of
h is weak and i
for their use are principally based on biological
plausibility and expert opinion.’ ? Despite this widely
held yet unsubstantiated belief of efficacy, many
studies of parachutes have suggested injuries related
to their use in both military and recreational settings,”
and parachutist injuries are formally recognized in
the World Health O s ICD-10 (international
classification of diseases, 10th revision).” This could
raise concerns for supporters of evidence-based
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believed to be useful have ultimately failed to
show efficacy when subjected to properly executed
randomized clinical trials.®”
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Randomization On its Own Terms

Are there such arguments?

There are definitely no dominance arguments: if you know that the disease is
fatal without treatment, the variance-minimizing estimator of the ATE assigns
everyone to treatment.

There might be minimax arguments.



Optimal Design of Experiments

[Kirstine Smith (1878-1939) was a Danish Statistician. She is credited
with the creation of the field of optimal design of experiments. Karl
Pearson considered her to be one of his most brilliant mathematical
statisticians.

We have N experimental units

We have two treatments tO an

Her work with Pearson on minimum chi-square spurred a controversial
dialog between Pearson and Fisher, and led to Fisher’s introduction of
sufficient statistics.

We write the outcome of unit /

Selected Publications:
i i ¢ Smith, K. (1916). On the ‘best’ values of the constants in frequency distributions. Biometrika, 11(3),
We are interested in the avera 262-276. N _ |
¢ Smith, K. (1918). On the standard deviations of adjusted and mterpolated values of an observed
polynomial function and its constants and the guidance they give towards a proper choice of the
distribution of observations. Biometrika, 12(1/2), 1-85.
¢ Smith, K. (1922). The standard deviations of fraternal and parental correlation coefficients.

But we observe only exactly or Biometrika, 14(1/2), 1-22.



Optimal Design of Experiments

We have N experimental units, e.g. plots of land, or patients in a trial.
We have two treatments {, and ¢, e.g. varieties of wheat, competing drugs.

We write the outcome of unit / under treatment t as yit.

We are interested in the average treatment effect a:= N3 E[y']-E[y”].

But we observe only exactly one of { y', y°}.



Optimal Design of Experiments

A design is an assignment of units to treatments, i.e. a function f: N — {0, 1}.
Let D be the set of all designs.
Lety. = (y,, ..., y) be the observations arising from the design f.

We have an unbiased estimator a(y,), usually the difference-of-means.

The loss is a random variable L .= L(a, a(y,)).

ODE: pick the design fin D that minimizes E[ L_].



Optimal Design of Experiments

The theory of optimal design considers only deterministic designs!

Taylor & Francis

Taylor & Francis Group

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION ;
2022, VOL. 117, NO. 539, 1452-1465: Theory and Methods ‘fﬁ
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Optimal Design of Experiments
The theory of optimal design considers only deterministic designs!

Though the above property appears to give a strong argument in favor of the use of & 4.
in fact in both game theory and statistical decision theory it is widely recognized that a
minimax deterministic decision is often outperformed by a randomized decision strategy
(e.g., Blackwell and Girshick 1979, Berger 1985, chap. 5, Thie and Keough 2011, chap. 9).
Since design selection can be viewed as a decision problem, or alternatively a game
pitting the Statistician against Nature, it stands to reason that random decision strategies
should also be beneficial for experimental design. Nonetheless, aside from a few minimax
analyses of Fisherian randomization (Wu 1981; Li 1983; Hooper 1989; Bhaumik and

Mathew 1995), the topic of minimax random strategies for design selection appears
almost totally unexplored in the literature.
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Minimax Justifications

A series of somewhat neglected papers (Wu 1981; Li 1983; Waite and Woods
2020; Bai 2021) develops a minimax risk argument for randomization.



Minimax Justifications Redux: Causal States

A causal state is a random N x 2 matrix Y of potential outcomes, where

Y; = (Y:(0),Y;(1))

represents the counterfactual outcome under control and treatment, respectively,
for the ™" patient.

Let /) be the set of causal states that the researchers consider a priori possible.



Minimax Justifications Redux: Permutation Group

Let 1 be a collection of permutations of N.
Assumption 1: if Yisin Y and wis in I1, then nY is in Y. (Closure under [1)

The permutation group partitions people into “clinically equivalent” strata, e.g.

{<45 and severely ill, <45 and mildly ill, >=45 and severely ill, >=45 and mildly ill}



Minimax Justifications Redux: Strategies

A deterministic design is a k x n binary matrix T in which a row specifies which
subjects receive treatment.

A deterministic design T and a state Y determine a random observed outcome

Yr =diag(Y -T).

An estimator (for 9) is a function é(T, Yy) € R,



Minimax Justifications Redux: Strategies

A strategy is a pair (7, é) of a design and an estimator. Let S be the set of all
feasible strategies.

Assumption 2: If (T,0) € S, then (nT,0) € S.
If we can treat subject /, then we can also treat subjects indistinguishable from 1.
Assumption 3: 0(T,y) = 0(xT, 7y)

Renaming equivalent patients doesn’t change the value of the estimate.



Minimax Justifications Redux: Loss Functions
A loss function is a function L : )/ X R? s R=0,
Assumption4: [(Y,x) = L(7Y,x).

For example, since Y and nY agree in the value of the ATE, this assumption is
satisfied by the usual strategies.

Note: If your loss function doesn’t depend on Y (for example: clinical loss), then
this assumption is also satisfied.



Minimax Justifications Redux: Expected Loss

If Y is a state, T is a (randomized) design and § is an estimator, then the risk
(expected loss) is:

A

rv(0,T) = E[L(Y,0(T,Yr1))].

A design T is ancillary if it is independent from Y.



A First Minimax Theorem

Let M be a random permutation taking values in I1.

Theorem 1. Suppose that Assumptions 1-4 hold. Suppose T is ancillary and I is
independent of (Y, T). Then:

AN AN

sup ry (0, IIT) < sup ry (0, T).
Yey Ye)y

Corollary: in the worst case, a randomized design is at least as good as any
deterministic design.



More Minimax Theory

The preceding holds very generally. Can we say something more specific for the
case when 6 is the ATE and L is the usual squared-error loss?



More Minimax Theory

For deterministic potential outcomes and fully randomized designs, Imbens and
Rubin (2015) prove that the loss of the usual difference-of-means is given by:




More Minimax Theory
Suppose that all patients are equivalent and that for all
[Y;(0) = Y/(0)| € [a,b] and [Yi(1) = Y(1)] € [c,d].
then the minimax fully randomized design adjusts treatment number to the

maximum values of Sfand SCZ.

If all patients are not equivalent, the same idea applies to blocked designs: adjust
block treatment numbers to worst-case treatment variability in each block.



More Minimax Theory
What about balance?

Suppose that 'Y is closed under column permutation.

Then the minimax (block) randomized design is given by balanced (block)
randomization.



Ongoing Work

Can we generalize away from the standard estimators? In other words: can we
simultaneously optimize for the worst case design-estimator combo?

The answer: yes! But only if we restrict ourselves to unbiased estimators. (Then
we can even drop Assumption 2.)



