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Critics of Randomization 
Randomization has come in for criticism on purely epistemic grounds. 

● Bayesians have a hard time rationally reconstructing randomization
(Savage 1961,1962; Kadane & Seidenfeld, 1999; Kasy 2016).
 

●  The frequentist theory of optimal design of experiments does not endorse 
randomization (Kiefer 1959; Harville 1975).

● Philosophers of science have criticized the coherence of randomization 
(Urbach 1985; Worrall 2002). 



Randomization On its Own Terms

What is the best frequentist justification for randomization?

A standard answer:  Randomization guarantees the existence of an unbiased 
estimator of average treatment effect.



Our critique
1. Non-trivial randomization is not necessary for unbiased estimation of ATE. 

2. Not sufficient for unbiased estimation of other quantities e.g., the median or 
minimum causal effect.    (No design guarantees unbiased estimation)

3. Unbiasedness is not always a good to be sought:

a. Unbiased estimates may be incompatible with what is known from data or what is assumed by 
the model.  

b. Unbiased estimators are often inadmissible (i.e., weakly dominated) not matter one’s loss 
function.



Our proposal
Minimax foundations demonstrating that randomized designs (which ones?) 
minimize worst case loss (in what sense?) at finite samples. 
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Absence of Unbiased Estimates for Other Quantities

“there are no unbiased 
estimators of the minimum, 
maximum, or median for 
finite population sampling 
under any sampling design 
except census” (Hedayat et 
al., 2019).



Absence of Unbiased Estimates for Other Quantities

Note: If the outcome variable is only ordinal-scaled, comparisons of the ATEs of 
different interventions depend on the measurement unit. 

E.g. scholarships could appear better than counseling if you measure the number 
of college courses that are completed, but they might appear worse if you 
measure number of semesters completed.



Absence of Unbiased Estimates for Other Quantities
Theorem (Conor). 

There are no unbiased estimators for the pth percentile, which is the least value x 
such that at least p percent of the population is below x.
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Inverse Propensity Score Weighting
Suppose you want to estimate patient i’s response to treatment Yi(1). An unbiased 
estimator is given by:

Suppose p = 1/2. As things turn out, patient i is treated (T = 1) and survives four 
months past treatment. So it is known that Yi(1) = 4. But the estimate for Yi(1) is 
eight months, i.e., that we estimate that, if she were treated (which she was!), then 
patient i would survive twice as long as she actually did. Unbiased estimates may 
be incompatible with observation!



Inverse Propensity Score Weighting
This is a special case of a general phenomenon: when parameter spaces are 
bounded, unbiased estimation requires over(under)shooting known bounds. 
Unbiased estimators are dominated by estimators that cut-off at the known 
bounds.

“inadmissibility of unbiased estimators is likely to be the rule, rather than the 
exception” (Berger, 1989).

Berger, James O. (1989)  “On the Inadmissibility of Unbiased Estimators.” 
Statistics and Probability Letters. 9(5): pp. 381-4.
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The Causal Situation

T E

MU

T := treatment (binary);
E := effect (binary); 
M := measured covariates;
U := unmeasured covariates;
I := randomizer. 

I



Average Treatment Effect 
The goal is to estimate the 
average treatment effect (ATE):

Or, in the notation of the potential outcomes framework: 
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Trouble with Observational Studies 

If there is an unobserved common cause of T, E  
it is easy to come up with examples in which the ATE
is not identified.  T E

MU
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Trouble with Observational Studies 



The Point of Randomization
Randomization “breaks edges” into treatment, so that 
any association between T and E is due to the causal 
effect of T on E and not shared common causes. 
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The Point of Randomization
It ensures that the ATE is identified and equal to

Moreover an unbiased estimate of the ATE is easily 
obtained.
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The Point of Randomization

“In ideal randomized experiments, association is 
causation” 
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No Other Way?

So is randomization the only way to render the ATE 
identified and construct unbiased estimates? 
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No Other Way?

So is randomization the only way to render the ATE 
identified and construct unbiased estimates? 

No! 
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Instrumental Variables
I is an instrumental variable if (roughly)

● I is statistically independent of U,M;

● the only unblocked path from I to E goes 
through T

(a path is blocked if it contains a sequence like
… → T ← … ).
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Instrumental Variables
Suppose that 

● physicians assign patients to treatment 
according to their therapeutic judgement 

● and only consult a randomizing device ( I ) 
when they are in equipoise

then I is an instrumental variable. 
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Instrumental Variables
Theorem (Angrist and Imbens 1995): When an 
instrumental variable satisfies a “monotonicity” 
condition, then the ATE is identified and there is an 
unbiased estimator of the ATE. T E

MU
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Backdoor Adjustment
M satisfied the backdoor criterion w.r.t (T, E) if 
 

● M is not a descendant of T;

● M blocks every path between T and E that has 
an arrow into T.

T E

MU



Backdoor Adjustment
Theorem (Pearl, 1993) If there is observed variable 
Z satisfying the backdoor criterion wrt (T, E), then it 
is possible to construct an unbiased estimate of the 
causal effect of T on E. T E

MU



Backdoor Adjustment
Suppose that 

● physicians make assignment to treatment only 
on the basis of observed covariates M,

then M satisfies the backdoor criterion wrt (T, E).
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Randomization On its Own Terms
Neither guaranteeing that

1. the ATE is identified, nor that
2. there exists an unbiased estimator of the ATE,

is sufficient to justify randomization. 

Other designs get the same goods and are less hostile to individualized treatment.



Randomization On its Own Terms

The usual story establishes

1. the superiority of (quasi)experimental designs over observational designs;

but not 

2. the superiority of randomized experimental designs over other experimental 
designs.

 



Randomization On its Own Terms

If there is a frequentist argument justifying randomization over other methods, it 
cannot be framed in terms of identifiability or unbiasedness of estimates. 

It must be about efficiency. 

I.e. the variance of the estimator. 
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Randomization On its Own Terms

Are there such arguments?

There are definitely no dominance arguments: if you know that the disease is 
fatal without treatment, the variance-minimizing estimator of the ATE assigns 
everyone to treatment. 

There might be minimax arguments.



Optimal Design of Experiments 
We have N experimental units, e.g. plots of land, or patients in a trial.

We have two treatments t0 and t1, e.g. varieties of wheat, competing drugs.  

We write the outcome of unit i under treatment t as yi
t. 

We are interested in the average treatment effect  α:= N -1 Σi E[yi
1]- E[yi

0] .

But we observe only exactly one of { yi
1 ,  yi

0 }. 
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Optimal Design of Experiments 
A design is an assignment of units to treatments, i.e. a function f : N → {0, 1}.

Let D be the set of all designs. 

Let yf = (y1, …, yN) be the observations arising from the design f.  

We have an unbiased estimator  â(yf), usually the difference-of-means.  

The loss is a random variable Lf = L(α, â(yf)).

ODE: pick the design f in D that minimizes E[ Lf ].
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Minimax Justifications
A series of somewhat neglected papers (Wu 1981; Li 1983; Waite and Woods 
2020; Bai 2021) develops a minimax risk argument for randomization.  



Minimax Justifications Redux: Causal States
A causal state is a random N x 2 matrix Y of potential outcomes, where

represents the counterfactual outcome under control and treatment, respectively, 
for the ith patient. 

Let Y  be the set of causal states that the researchers consider a priori possible.



Minimax Justifications Redux: Permutation Group
Let Π be a collection of permutations of N. 

Assumption 1: if Y is in Y and π is in Π, then πY is in Y. (Closure under Π)

The permutation group partitions people into “clinically equivalent” strata, e.g.

{<45 and severely ill, <45 and mildly ill, >=45 and severely ill, >=45 and mildly ill}



Minimax Justifications Redux: Strategies
A deterministic design is a k x n binary matrix T in which a row specifies which 
subjects receive treatment. 

A deterministic design T and a state Y determine a random observed outcome 

An estimator (for θ) is a function                 



Minimax Justifications Redux: Strategies
A strategy is a pair            of a design and an estimator. Let S be the set of all 
feasible strategies.

Assumption 2: If                    then 

If we can treat subject i, then we can also treat subjects indistinguishable from i. 

Assumption 3: 

Renaming equivalent patients doesn’t change the value of the estimate.



Minimax Justifications Redux: Loss Functions
A loss function is a function 

Assumption 4:  

For example, since Y and πY agree in the value of the ATE, this assumption is 
satisfied by the usual strategies.  

Note: If your loss function doesn’t depend on Y (for example: clinical loss), then 
this assumption is also satisfied. 



Minimax Justifications Redux: Expected Loss 
If Y is a state, T is a (randomized) design and    is an estimator, then the risk 
(expected loss) is:

A design T is ancillary if it is independent from Y. 



A First Minimax Theorem

Let Π be a random permutation taking values in Π.

Theorem 1. Suppose that Assumptions 1-4 hold. Suppose T is ancillary and Π is 
independent of (Y, T). Then: 

Corollary: in the worst case, a randomized design is at least as good as any 
deterministic design.
 



More Minimax Theory
The preceding holds very generally. Can we say something more specific for the 
case when θ is the ATE and L is the usual squared-error loss?



More Minimax Theory
For deterministic potential outcomes and fully randomized designs, Imbens and 
Rubin (2015) prove that the loss of the usual difference-of-means is given by:

Where: 



More Minimax Theory
Suppose that all patients are equivalent and that for all i 

then the minimax fully randomized design adjusts treatment number to the 
maximum values of St

2 and Sc
2 .

If all patients are not equivalent, the same idea applies to blocked designs: adjust 
block treatment numbers to worst-case treatment variability in each block.



More Minimax Theory
What about balance? 

Suppose that Y is closed under column permutation.

Then the minimax (block) randomized design is given by balanced (block) 
randomization.



Ongoing Work
Can we generalize away from the standard estimators? In other words: can we 
simultaneously optimize for the worst case design-estimator combo? 

The answer: yes! But only if we restrict ourselves to unbiased estimators. (Then 
we can even drop Assumption 2.)


