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INDUCTIVE VS. DEDUCTIVE
INFERENCE



Taxonomy of Inference

e All the objects of human ... enquiry may
naturally be divided into two kinds, to wit,

1. Relations of Ideas, and
2. Matters of Fact.

David Hume, Enquiry, Section IV, Part 1.



Taxonomy of Inference

Any ... inference in science belongs to one of two
kinds:

1. either it yields certainty in the sense that the
conclusion is necessarily true, provided that the
premises are true,

2. or it does not.
The first kind is ... deductive inference ....

The second kind will ... be called ‘inductive inference'.
R. Carnap, The Continuum of Inductive Methods, 1952, p. 3.



Taxonomy of Inference

e Explanatory arguments which ... account for a
phenomenon by reference to statistical laws are not of

the strictly deductive type.
* An account of this type will be called an ... inductive

explanation.
C. Hempel, “Aspects of Scientific Explanation”, 1965, p. 302.



Deductive Inference

Truth Preserving
* In each possible world:
— if the premises are true,
— then the conclusion is true.

Monotonic

* Conclusions are stable in light of further premises.



Taxonomy of Inference
inference
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deductive inductive

truth preserving, Everything else
monotonic.




Taxonomy of Inference

inference
deductive inductive
* Calculation * Inferring universal H
e Refuting universal H * Choosing between
* Verifying existential H universal Hy, H;, H, , ...

* Deciding between universal H, H’
* Predicting E from H
 Hypotheses compatible with E




Real Data

* All real measurements are subject to probable
error.

— |t can be reduced through redundancy (sample
size).
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Real Predictions

* The predictions of probabilistic theories are
subject to probable error.

* |t can be reduced through repeated sampling.



Real Calculations

* All real calculations are subject to probable
error.

— It can be reduced by redundant codes, circuits,
and refereeing.




Stochastic Deductive Inference

Truth preserving in chance
* In each possible world:
— if the premises are true,

— then the chance of drawing an erroneous
conclusion is low.

Monotonic in chance

 The chance of producing a conclusion is guaranteed
not to drop by much.



Taxonomy of Inference

inference
inductive
strictly stochastically  everything else
deductive deductive
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Taxonomy of Inference

inference
inductive

strictly stochastically ~ everything else
deductive deductive
1. Ideal calculation 1. Real calculation 1. Inferring universal H,,
2. Refuting universal H, 2. Refuting point null A, 2. Choosing between
3. Verifying existential H| 3. Verifying composite H, A universal Hy, Hy, Hy , ...
4. Deciding between universal 4.

Deciding between point 1. Inferring simple H,
H,, H, hypotheses H,, H,

Predicting E from H Direct inference of E from H
Hypotheses compatible with E 6. Non-rejection.

2. Model selection
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Bad Taxonomy
things

\

everything else
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white roses non-white roses everything else




Improved Taxonomy of Inference

inference
deductive inductive
strict stochastic strict stochastic
1. Refutinguniversal H, 1. Refuting point null 1. Inferring universal H, 1. Inferring simple H,
Verifying existential 4/, 2. Verifying composite H, Choosing between 2.  Model selection
Deciding between 3. Deciding between point universal H,, H,,
universal H,,, H, hypotheses H,,, H, H,, ..
4. Predicting E from H 4. Direct inference of £ from H
5. Compatibility with E 5. Non-rejection.
6. Ideal calculation 6. Real calculation




Improved Taxonomy of Inference

inference
deductive inductive
strict stochastic strict stochastic

1. Inferring universal H, 1. Inferring simple H,,

Choosing between 2. Model selection
universal H,,, H,,
H,, ..

Refuting point null H,




Question

e |n strict deduction, the evidence rules out
possibilities.




Question

* In statistical deduction, the sample is logically
compatible with every possibility.




Question

* |sthere a common, underlying sense of empirical
information?




The Topology of Information

We ¥ topology!
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Worlds

 The points in W are possible worlds.




The Structure of Information

An information basis Jis a countable set of information
states such that in every world:

1. some information state true;

2. each true pair of information states is entailed by a
true information state.

W




The Structure of Information

Local information basis at w:

IT(w) := {F el :wekFE}.




Sleeping Beauty Theorist

* The theorist is awakened by her graduate
students only when her theory is refuted.




Example: Sequential Binary Experiment

Worlds = infinite discrete sequences of outcomes.
Information states = cones of possible extensions:

observed so far -
- . v 0
Q L — possible extensions

Q.




Example: Measurement of X

e Worlds = real numbers.

* Information states = open intervals.
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Example: Joint Measurement

* Worlds = points in real plane.
* Information states = open rectangles.
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Example: Equations

* Worlds = functions f : R — R.

N



Example: Laws

* An observation is a joint measurement.

I
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Example: Laws

e The information state is the set of all worlds
that touch each observation.



Deductive Verification and Refutation

His verified by E iff £E & H.
H is refuted by E iff £ & H°.
His decided by E iff H is either verified or refuted by E.




Will be Verified

w is an interior [exterior] point of H iff
iff H will be verified [refuted] in w
iff there is £ € 91(w) s.t. H is verified [refuted] by E.




Will be Verified

int / := the proposition that H will be verified.
ext H# := the proposition that H will be refuted.
bdry H := the proposition that H will never be decided.

int A bdry H ext H
ext H°¢ bdry H* int H°

N /L
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Will be Verified

e bdry(H) n H = “you face Hume’s problem w.r.t. H”;
e bdry(H) n H® = “you face Duhem’s problem w.r.t. H”

Hume(H°) Duhem(H°)
Duhem(H) Hume(H)

H H°




Verifiability, Refutability, Decidability

His verifiable iff H < int(H).

i.e., iff H will be verified however H is true.

H is refutable iff cl(H) & H.
i.e., iff H will be refuted however H is false.

H is decidable iff His both verifiable and
refutable.




Methods

* Averification method for H is an inference rule V(£) = A4 such
that in every world w:

I. we& H: Vconvergesto H without error.
2. w €& H¢: Valways concludes W.



Methods

* Arefutation method for H is just a verification method for H°.

* A decision method for H converges to H or to H® without
error.



Methods

* Alimiting verification method for H is an inference rule V(E) =
A such that in every world w:

w € H iff Vconvergestosome true A’ that entails H.

* Alimiting refutation method for H is a limiting verification
method for H.

* Alimiting decision method for H is a limiting verification
method and a limiting refutation for H.



Methods

 His methodologically verifiable [refutable, decidable, etc.] iff
H has a method of the corresponding kind.



Verification, Refutation, and Decision
are Deductive

Proposition (truth preservation).
If V'is a verifier, refuter or decider for H and V(£) = A4,

then £ € 4.

Proposition (monotonicity).

If there is a verifier, refuter or decider for H, then
there is a monotonic one that never drops H or H°
after having concluded it.



Limiting Verification, Refutation, and
Decision are Inductive

Proposition. No limiting verifier of “never
awakened” is truth preserving or monotonic.
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Topology

Let 7* denote the closure of 4 under union.

Proposition:
If (W, 1) is an information basis
then (W, 7*) is a topological space.



Topology
Hisopen iff H<&E 7%

His closed iff H®is open.
His clopen iff His both closed and open.

His locally closed iff H is a difference of open sets.



Sleeping Theorist Example

H, = “Awakened twice” is open.

H, =“Awakened once” is locally closed.

~_--------_

H, = “Never awakened” is closed.




Sequential Example

H, =“You will see 1 exactly twice” is open.
H, ="“You will see 1 exactly once” is locally closed.

H,="You will never see 1” is closed.
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Equation Example

“guadratic” is open.
“linear” is locally closed.
“constant” is closed.




Topology

 His limiting open iff H is a countable union of locally
closed sets.

 His limiting closed iff H¢is limiting open.
 His limiting clopen iff H is both limiting open and
limiting closed.



deBrecht Hierarchy

M, 2,
limiting closed limiting open

A, Natural generalization

limiting clopen of Borel hierarchy.

closed open

Selivanov 2006 (?)

clopen




Topology and Pragmatics

Prop. [ 0 zz }

I_Il Z1
refutable verifiable
AW
decidable

- deduction




Topology and Methodology

M, 2,
PrOP- meth. refutable meth. verifiable
in the limit in the limit
= induction
A2
meth.
decidable in
the limit
M, 2,
meth. refutable meth. verifiable
— deduction
AW
meth. decidable




OCKHAM’S TOPOLOGICAL RAZOR



Popper Was Doing Topology!

Popper’s simplicity relation:

A<B & ACCcB.

H, X Hy X Hj.




A Slight Revision

Our simplicity relation:

A<B & ANd(B)\B # @

H, < Hy < Hs.




Ockham’s Razor

* A question partitions W into possible answers.
* Arelevant response is a disjunction of answers.

Proposition. The following principles are equivalent.
1. Infer a simplest relevant response in light of E.
2. Infer a refutable relevant response compatible with E.

3. Infer a relevant response that is not more complex
than the true answer.



Epistemic Mandate for Ockham’s Razor

If you violate Ockham’s razor then
1. either you fail to converge to the truth or
2. nature can force you into an avoidable cycle of opinions.

avoidable

£ O\

Hy <1 Hi<q H,

\J\J

unavoidable



Does Not Presuppose Simplicity

Indeed, by favoring a complex hypothesis, you incur the
avoidable cycle in a complex world!

avoidable

£ O\

Hy <1 Hi<q H,

\J\J

unavoidable



STATISTICAL INFORMATION
TOPOLOGY



Statistical Information Topology

= the topology that lifts the preceding results to
statistical inference.




Skepticism

The above account...

“may be okay if the candidate theories are deductively
related to observations, but when the relationship is
probabilistic, | am skeptical ...”.

Eliott Sober, Ockham’s Razors, 2015



Epistemology of the Sample

* The sample space S always comes with its own
topology T

T reflects what is verifiable about the sample itself.

s definitely falls within open interval Z.




Statistics

 Worlds are probability measures over 7.

w

W 1



The Difficulty

* Every sample is logically consistent with all worlds!

e So it seems that statistical information states are all
triviall



Response

e Solve for the unique topology such that:
statistically verifiable = open.

Topology . 3‘ Statistics




Feasible Sample Events

* |t's impossible to tell whether a point right on the
boundary of Zis in or out of Z.

e Zis feasible iff the chance of its boundary is zero in
every world.



Feasible Method

A feasible method M is a measurable function from
samples to propositions over W such that M-1(A) is
feasible, for all A.

S—
S—

S ) —
infer A infer B



Feasible Tests

A feasible test of H is a feasible method that outputs H®
or W.

S S ) —
infer H° infer W infer H°



Statistical Information Topology

w € cl H iff there exists sequence (w,) in H, such that
for all feasible tests M :

lim py, (M rejects) — py, (M rejects).
n— oo

H
w
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Weak Topology

Proposition: If 7 has a countable basis of feasible
regions, then:

statistical information topology = weak topology.



Weak Topology

Proposition: If T is second-countable and metrizable,
then the weak topology is second-countable and
metrizable e.g., by the Prokhorov metric.



Methods

e A statistical verification method for H at level >0 is a

sequence (M) of feasible tests of H°such that for every world w
and sample size n:

1. ifw € H: M, convergesin probability to H;
2. Ifwe H°: M, concludes W with probability at least 1-¢.

» His statistically verifiable iff H has a statistical verification
method at each a > 0.



Methods

* A statistical verification method for H at level a>0is a
sequence (M) of feasible tests of H°such that for every world w
and sample size n:

1. ifw € H: M, convergesin probability to H;
2. Ifwe H°: M, concludes W with probability at least 1-«,,

for a, =2 0, and dominated by a.



Methods

* Alimiting statistical verification method for H is a sequence
(M) of feasible methods such that:

w € H iff M converges in probability to a true H’ that entails H.

* A limiting statistical refutation method for H is a limiting
verification method for H-.

* Alimiting statistical decision method for H is a limiting
verification method and a limiting refutation for H.



Topology and Statistical Methodology

===

M, 2,
PrOP- stat. refutable stat. verifiable
in the limit in the limit
= induction
A2
stat. decidable
in the limit
M, 2,
stat. refutable stat. verifiable
— deduction
AW
stat. decidable




Deduction vs. Induction: Wrong

nZ
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refutable in

the limit &
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meth.
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Deduction vs.

Induction: Right

M, h 2,
meth. meth.
refutable in verifiable in
the limit & the limit
AZ
meth.
decidable in
E} the limit _
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Monotonicity

Conjecture: For any open H and a >0, there exists a
verification method at level o such thatif w € H:

p?uz(an = H) _pgl(Mnl =H) < a,

: "@!1'!!

forn,> n,.
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Topological Simplicity

It still makes sense in terms of statistical information
topology!

A<B & ANnc(B)\ B # @.

H, < Hy < Hs.




Ockham’s Statistical Razor

Concern: “compatibility with E” is no longer meaningful.

Response: the third formulation of O.R. does not mention
compatibility with experience!

3. Infer a relevant response that is more complex than the
true answer with chance < a.



Epistemic Mandate for Ockham’s Razor

If you violate Ockham’s razor with chance «, then
1. either you fail to converge to the truth in chance or

2. nature can force you into an a-cycle of opinions
(complex-simple-complex), even though such cycles are

avoidable.
avoidable

£ O\

Hy <1 Hi<q H,

\J\J

unavoidable



A New Objective Bayesianism

How much prior bias toward simple models is necessary
to avoid a-cycles?

X Indifference = ignorance.

\/ truth-conduciveness.



CONCLUSION



A Method for Methodology

1. Develop basic methodological ideas in topology.

2. Port them to statistics via statistical information
topology.




1.

Some Concluding Remarks

Information topology is the structure of the scientist’s
problem context.

The apparent analogy between statistical and ideal
methodology reflects shared topological structure.

Thereby, ideal logical/topological ideas can be ported
in a direct and uniform fashion to statistics.

The result is a new, systematic, frequentist foundation
for inductive inference and Ockham’s razor.



ETC.



Application: Causal Inference from
Non-experimental Data

Causal network inference from retrospective data.
That is an inductive problem.

The search is strongly guided by Ockham’s razor.
We have the only non-Bayesian foundation for it.



Application: Science

All scientific conclusions are supposed to be
counterfactual.

Scientific inference is strongly simplicity biased.

Standard ML accounts of Ockham’s razor do not apply
to such inferences (J. Pearl).

Our account does.



