

Deduction, Induction, Statistics, and Topology

{Kevin T. Kelly, Konstantin Genin}
Carnegie Mellon University

Amsterdam 2016

INDUCTIVE VS. DEDUCTIVE INFERENCE

- All the objects of human ... enquiry may naturally be divided into two kinds, to wit,
 - 1. Relations of Ideas, and
 - 2. Matters of Fact.

David Hume, Enquiry, Section IV, Part 1.

- Any ... inference in science belongs to one of two kinds:
 - either it yields certainty in the sense that the conclusion is necessarily true, provided that the premises are true,
 - 2. or it does not.
- The first kind is ... deductive inference
- The second kind will ... be called 'inductive inference'.
- R. Carnap, The Continuum of Inductive Methods, 1952, p. 3.

- Explanatory arguments which ... account for a phenomenon by reference to statistical laws are not of the strictly deductive type.
- An account of this type will be called an ... inductive explanation.
- C. Hempel, "Aspects of Scientific Explanation", 1965, p. 302.

Deductive Inference

Truth Preserving

- In each possible world:
 - if the premises are true,
 - then the conclusion is true.

Monotonic

Conclusions are stable in light of further premises.

inference inductive truth preserving, Everything else

deductive

monotonic.

inference

deductive

- Calculation
- Refuting universal H
- Verifying existential H
- Deciding between universal H, H'
- Predicting E from H
- Hypotheses compatible with E

inductive

- Inferring universal H
- Choosing between universal H₀, H₁, H₂, ...

Real Data

- All real measurements are subject to probable error.
 - It can be reduced through redundancy (sample size).

Real Predictions

- The predictions of probabilistic theories are subject to probable error.
 - It can be reduced through repeated sampling.

Real Calculations

- All real calculations are subject to probable error.
 - It can be reduced by redundant codes, circuits, and refereeing.

Stochastic Deductive Inference

Truth preserving in chance

- In each possible world:
 - if the premises are true,
 - then the chance of drawing an erroneous conclusion is low.

Monotonic in chance

 The chance of producing a conclusion is guaranteed not to drop by much.

strictly

deductive

- 1. Ideal calculation -----
- 2. Refuting universal H_0 -----
- 3. Verifying existential H_1
- 4. Deciding between universal --- H_0 , H_1
- 5. Predicting E from H
- 6. Hypotheses compatible with *E*

stochastically

deductive

- 1. Real calculation
- 2. Refuting point null H_0
- 3. Verifying composite H_1
- 4. Deciding between point hypotheses H_0 , H_1
- 5. Direct inference of E from H
- 6. Non-rejection.

everything else

- 1. Inferring universal H_0
- 2. Choosing between universal H_0 , H_1 , H_1 , ...
- 1. Inferring simple H_0
- Model selection

Bad Taxonomy

Improved Taxonomy of Inference

- 1. Refuting universal $H_{
 m 0}$
- 2. Verifying existential H_1
- 3. Deciding between universal H_0 , H_1
- 4. Predicting E from H
- 5. Compatibility with *E*
- 6. Ideal calculation

- 1. Refuting point null H_0
- 2. Verifying composite H_1
- 3. Deciding between point hypotheses H_0 , H_1
- 4. Direct inference of E from H
- 5. Non-rejection.
- 6. Real calculation

- Inferring universal H_0 1. Infe
- 2. Choosing between universal H_0 , H_1 , ...
- 1. Inferring simple H_0
- 2. Model selection

Improved Taxonomy of Inference

- Refuting universal H_0
- Verifying existential H_1
- Deciding between universal H_0 , H_1
- Predicting E from H
- Compatibility with E
- Ideal calculation

- Refuting point null H_0
- 2. Verifying composite H_1
- Deciding between point hypotheses H_0 , H_1
- Direct inference of *E* from *H*
- Non-rejection. 5.
- Real calculation

- Inferring universal H_0 Inferring simple H_0
- Choosing between universal H_0 , H_1 , H_1 , ...
- Model selection

Question

• In strict deduction, the evidence rules out possibilities.

Question

- In strict deduction, the evidence rules out possibilities.
- In statistical deduction, the sample is logically compatible with every possibility.

Question

- In strict deduction, the evidence rules out possibilities.
- In statistical deduction, the sample is logically compatible with every possibility.
- Is there a common, underlying sense of empirical information?

The Topology of Information

CMU ILLC

Worlds

• The points in W are possible worlds.

The Structure of Information

An **information basis** I is a countable set of information states such that in every world:

- 1. some information state true;
- each true pair of information states is entailed by a true information state.

The Structure of Information

Local information basis at w:

$$\mathcal{I}(w) := \{ E \in \mathcal{I} : w \in E \}.$$

Sleeping Beauty Theorist

 The theorist is awakened by her graduate students only when her theory is refuted.

Example: Sequential Binary Experiment

Worlds = infinite discrete sequences of outcomes. **Information states** = cones of possible extensions:

Example: Measurement of X

- Worlds = real numbers.
- Information states = open intervals.

Example: Joint Measurement

- Worlds = points in real plane.
- Information states = open rectangles.

Example: Equations

• Worlds = functions $f: \mathbb{R} \to \mathbb{R}$.

Example: Laws

• An observation is a joint measurement.

Example: Laws

 The information state is the set of all worlds that touch each observation.

Deductive Verification and Refutation

H is **verified** by *E* iff $E \subseteq H$.

H is **refuted** by E iff $E \subseteq H^c$.

H is **decided** by E iff H is either verified or refuted by E.

Will be Verified

w is an **interior [exterior] point** of H iff iff H will be verified [refuted] in w iff there is $E \subseteq \mathcal{I}(w)$ s.t. H is verified [refuted] by E.

Will be Verified

int H := the proposition that H will be verified.

ext H := the proposition that H will be refuted.

bdry H := the proposition that H will never be decided.

Will be Verified

- $bdry(H) \cap H = "you face$ **Hume's problem**w.r.t. <math>H";
- bdry(H) $\cap H^c$ = "you face **Duhem's problem** w.r.t. H"

Verifiability, Refutability, Decidability

H is **verifiable** iff $H \subseteq int(H)$.

i.e., iff H will be verified however H is true.

H is **refutable** iff $cl(H) \subseteq H$.

i.e., iff H will be refuted however H is false.

H is **decidable** iff H is both verifiable and refutable.

- A verification method for H is an inference rule V(E) = A such that in every world w:
 - 1. $w \in H$: V converges to H without error.
 - 2. $w \in H^c$: V always concludes W.

- A verification method for H is an inference rule V(E) = A such that in every world w:
 - 1. $w \in H$: V converges to H without error.
 - 2. $w \in H^c$: V always concludes W.
- A **refutation method** for H is just a verification method for H^c .
- A decision method for H converges to H or to H^c without error.

- A limiting verification method for H is an inference rule V(E) = A such that in every world w:
 - $w \in H$ iff V converges to some true H' that entails H.
- A **limiting refutation method** for H is a limiting verification method for H^c .
- A **limiting decision method** for H is a limiting verification method and a limiting refutation for H.

- A verification method for H is an inference rule V(E) = A such that in every world w:
 - 1. $w \in H$: V converges to H without error.
 - 2. $w \in H^c$: Valways concludes W.
- A **refutation method** for H is just a verification method for H^c .
- A decision method for H converges to H or to H^c without error.
- H is methodologically verifiable [refutable, decidable, etc.] iff H has a method of the corresponding kind.

Verification, Refutation, and Decision are Deductive

Proposition (truth preservation).

If V is a verifier, refuter or decider for H and V(E) = A, then $E \subseteq A$.

Proposition (monotonicity).

If there is a verifier, refuter or decider for H, then there is a monotonic one that never drops H or H^c after having concluded it.

Limiting Verification, Refutation, and Decision are Inductive

Proposition. No limiting verifier of "never awakened" is truth preserving or monotonic.

Topology

Let I^* denote the closure of I under union.

Proposition:

If (W, \mathcal{I}) is an information basis then (W, \mathcal{I}^*) is a topological space.

Topology

- H is open iff $H \in \mathcal{I}^*$.
- H is **closed** iff H^c is open.
- H is clopen iff H is both closed and open.

H is locally closed iff H is a difference of open sets.

Sleeping Theorist Example

 H_2 = "Awakened twice" is open.

 H_1 = "Awakened once" is locally closed.

 H_0 = "Never awakened" is closed.

Sequential Example

```
H_2 = "You will see 1 exactly twice" is open.
```

 H_1 = "You will see 1 exactly once" is locally closed.

 H_0 = "You will never see 1" is closed.

Equation Example

```
H_2 = "quadratic" is open.

H_1 = "linear" is locally closed.

H_0 = "constant" is closed.
```

Topology

- H is limiting open iff H is a countable union of locally closed sets.
- H is **limiting closed** iff H^c is limiting open.
- H is limiting clopen iff H is both limiting open and limiting closed.

deBrecht Hierarchy

Topology and Pragmatics

Topology and Methodology

OCKHAM'S TOPOLOGICAL RAZOR

Popper Was Doing Topology!

Popper's simplicity relation:

$$A \leq B \Leftrightarrow A \subseteq \mathsf{cl}B.$$

$$H_1 \leq H_2 \leq H_3$$
.

A Slight Revision

Our simplicity relation:

$$A \triangleleft B \Leftrightarrow A \cap \mathsf{cl}(B) \setminus B \neq \varnothing.$$

$$H_1 \triangleleft H_2 \triangleleft H_3$$
.

Ockham's Razor

- A question partitions W into possible answers.
- A relevant response is a disjunction of answers.

Proposition. The following principles are **equivalent**.

- 1. Infer a simplest relevant response in light of E.
- 2. Infer a **refutable** relevant response compatible with E.
- 3. Infer a relevant response that is **not more complex** than the true answer.

Epistemic Mandate for Ockham's Razor

If you violate Ockham's razor then

- 1. either you fail to converge to the truth or
- 2. nature can force you into an avoidable cycle of opinions.

Does Not Presuppose Simplicity

Indeed, by **favoring** a **complex** hypothesis, you incur the avoidable cycle in a **complex** world!

STATISTICAL INFORMATION TOPOLOGY

Statistical Information Topology

= the topology that lifts the preceding results to statistical inference.

Skepticism

The above account...

"may be okay if the candidate theories are **deductively** related to observations, but when the relationship is **probabilistic**, I am **skeptical** ...".

Eliott Sober, Ockham's Razors, 2015

Epistemology of the Sample

- The sample space S always comes with its own topology \mathcal{T} .
- \mathcal{T} reflects what is verifiable about the **sample** itself.

s definitely falls within open interval Z.

Statistics

• Worlds are probability measures over \mathcal{T} .

The Difficulty

- Every sample is logically consistent with all worlds!
- So it seems that statistical information states are all trivial!

Response

Solve for the unique topology such that:

statistically verifiable = open.

Topology

Statistics

Feasible Sample Events

- It's impossible to tell whether a point right on the boundary of Z is in or out of Z.
- Z is feasible iff the chance of its boundary is zero in every world.

Feasible Method

A feasible method M is a measurable function from samples to propositions over W such that $M^{-1}(A)$ is feasible, for all A.

Feasible Tests

A feasible test of H is a feasible method that outputs H^c or W.

Statistical Information Topology

 $w \in \operatorname{cl} H$ iff there exists sequence (w_n) in H, such that for all feasible tests M:

$$\lim_{n\to\infty} p_{w_n}(M \text{ rejects}) \to p_w(M \text{ rejects}).$$

Weak Topology

Proposition: If \mathcal{T} has a countable basis of feasible regions, then:

statistical information topology = weak topology.

Weak Topology

Proposition: If \mathcal{T} is second-countable and metrizable, then the weak topology is second-countable and metrizable e.g., by the Prokhorov metric.

• A statistical verification method for H at level $\alpha > 0$ is a sequence (M_n) of feasible tests of H^c such that for every world w and sample size n:

- 1. if $w \in H$: M_n converges in probability to H;
- 2. If $w \in H^c$: M_n concludes W with probability at least 1- α .

• H is **statistically verifiable** iff H has a statistical verification method at each $\alpha > 0$.

- A statistical verification method for H at level $\alpha > 0$ is a sequence (M_n) of feasible tests of H^c such that for every world w and sample size n:
 - 1. if $w \in H$: M_n converges in probability to H;
 - 2. If $w \in H^c$: M_n concludes W with probability at least $1-\alpha_n$,

for $\alpha_n \rightarrow 0$, and dominated by α .

Methods

- A limiting statistical verification method for H is a sequence (M_n) of feasible methods such that:
 - $w \in H$ iff M converges in probability to a true H' that entails H.
- A **limiting statistical refutation method** for H is a limiting verification method for H^c .
- A **limiting statistical decision method** for H is a limiting verification method and a limiting refutation for H.

Topology and Statistical Methodology

Deduction vs. Induction: Wrong

Deduction vs. Induction: Right

Monotonicity

Conjecture: For any open H and $\alpha > 0$, there exists a verification method at level α such that if $w \in H$:

$$p_w^{n_2}(M_{n_2} = H) - p_w^{n_1}(M_{n_1} = H) < \alpha,$$

for $n_2 > n_1$.

Topological Simplicity

It still makes sense in terms of statistical information topology!

$$A \lhd B \Leftrightarrow A \cap \mathsf{cl}(B) \setminus B \neq \varnothing.$$

$$H_1 \triangleleft H_2 \triangleleft H_3$$
.

Ockham's Statistical Razor

Concern: "compatibility with E" is no longer meaningful.

Response: the third formulation of O.R. does not mention compatibility with experience!

3. Infer a relevant response that is more complex than the true answer with chance $< \alpha$.

Epistemic Mandate for Ockham's Razor

If you violate Ockham's razor with chance α , then

- 1. either you fail to converge to the truth in chance or
- 2. nature can force you into an α -cycle of opinions (complex-simple-complex), even though such cycles are avoidable.

A New Objective Bayesianism

How much prior bias toward simple models is necessary to avoid α -cycles?

Indifference = ignorance.

truth-conduciveness.

CONCLUSION

A Method for Methodology

- 1. Develop basic methodological ideas in topology.
- 2. Port them to statistics via statistical information topology.

Some Concluding Remarks

- 1. Information topology is the structure of the scientist's problem context.
- 2. The apparent **analogy** between statistical and ideal methodology reflects **shared topological structure**.
- 3. Thereby, ideal logical/topological ideas can be ported in a direct and uniform fashion to statistics.
- 4. The result is a new, systematic, **frequentist** foundation for **inductive inference** and **Ockham's razor**.

ETC.

Application: Causal Inference from Non-experimental Data

- Causal network inference from retrospective data.
- That is an inductive problem.
- The search is strongly guided by Ockham's razor.
- We have the only non-Bayesian foundation for it.

Application: Science

- All scientific conclusions are supposed to be counterfactual.
- Scientific inference is strongly simplicity biased.
- Standard ML accounts of Ockham's razor do not apply to such inferences (J. Pearl).
- Our account does.