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Abstract

The distinction between deductive (infallible, monotonic) and inductive (falli-
ble, non-monotonic) inference is fundamental in the philosophy of science. How-
ever, virtually all scientific inference is statistical, which falls on the inductive side
of the traditional distinction. We propose that deduction should be nearly infalli-
ble and monotonic, up to an arbitrarily small, a priori bound on chance of error.
A challenge to that revision is that deduction, so conceived, has a structure en-
tirely distinct from ideal, infallible deduction, blocking useful analogies from the
logical to the statistical domain. We respond by tracing the logical insights of
traditional philosophy of science to the underlying information topology over
possible worlds, which corresponds to deductive verifiability. Then we isolate the
unique information topology over probabilistic worlds that corresponds to statisti-
cal verifiability. That topology provides a structural bridge between statistics and
logical insights in the philosophy science.

1 Traditional Taxonomy of Inference
Nothing could be more familiar or more obvious in the philosophy of science than the
elementary distinction between inductive and deductive inference. For example:

Any . . . inference in science belongs to one of two kinds: either it yields
certainty in the sense that the conclusion is necessarily true, provided that
the premises are true, or it does not. The first kind is . . . deductive inference
. . . . The second kind will . . . be called ‘inductive inference’ [Carnap, 1952,
p. 3].

Carnap identified deductive inference in science with logically valid deduction. Log-
ically valid deductions have two crucial properties. They are truth preserving or
infallible—the conclusion must be true if the premises are, and they are monotonic,
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in the sense that adding further premises does not invalidate them. The suggested
taxonomy is:

inference: deductive: truth preserving, monotonic
inductive: everything else.

On that view, deduction appears to apply to such problems as calculation, refutation of
a universal law, verification of an existential law, deciding between two universal laws,
deriving predictions from a law, and determining which laws are logically compatible
with the given evidence. But one must rely on induction to infer a universal law from
the observations, to choose among an infinite range of universal laws, etc. Thus, the
distinction between induction and deduction provides a revealing, high-level, epistemic
distinction among scientific activities.

2 Trivialization by Probable Error
The trouble is that the preceding taxonomy doesn’t really work. Statistical laws don’t
necessarily imply anything about what will happen. The predictions hold, at best, with
high probability. Hempel therefore placed all such inferences on the side of induction,
including prediction and explanation from a statistical theory:

Explanatory arguments which . . . account for a phenomenon by reference
to statistical laws are not of the strictly deductive type. An account of this
type will be called an . . . inductive explanation [Hempel, 1965, p. 302].

Alas, even deterministic laws must be tested with concrete measurements, all of which
are subject to error. Error is usually attributed to random causes that result in a
probability distribution of possible measurement values. One can reduce the probable
error of measurement by improvements in instrumentation, by diligence in its employ-
ment, and by making repeated measurements and averaging them, but one can never
eliminate it entirely. So testing laws should fall, after all, on the side of induction.

Deriving predictions from a universal law is also fraught with probable error. Laws
typically have free parameters that must be estimated from samples. One can tighten
the predictions by basing the estimates on larger samples, but the random error never
goes away entirely. So deriving predictions from a law should, again, fall on the side of
induction.

Real-life calculations are also subject to probable error. Mathematicians can be dis-
tracted or make mistakes. Every concrete computation is subject to error due to faulty
programming. More fundamentally, every physical computational process is subject to
interference by cosmic rays. As a result, “data decay” is a real issue in computing that
becomes a significant risk for computations in deep space probes [Niranjan and Frenzel,
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1996]. One can deal with the problem by redundancy and repeating the computations,
but it never goes away entirely.

To summarize; infallible, monotonic reasoning is very desirable, and there are de-
tailed logical and computational theories of it. But no concrete scientific inference
rises to that standard. So all scientific reasoning must be inductive. Therefore, the
distinction between induction and deduction ultimately provides no useful distinctions
concerning the various inferential tasks in science.

3 A Response
One could leave it at that, and place the distinction between induction and deduction
on the shelf of failed concepts in the philosophy of science. A more engaging response
is that the tasks usually identified as deductive in science are nearly deductive, but
for a small chance of error that can often be estimated and controlled, whereas the
tasks that are considered inductive come with no bounds on probable error whatsoever
[Gelman and Shalizi, 2013, Ionides et al., 2017]. In particular, an inferential procedure
is truth preserving in chance iff it has the property that the chance of drawing a
false conclusion is low, given that the premises are true. It is monotonic in chance iff
the chance of producing a conclusion is guaranteed not to drop by much, given further
information.

Those slightly weakened versions of truth preservation and monotonicity can serve
as useful guides for understanding what is at stake in the various inferential tasks faced
in concrete scientific inferences. The revised taxonomy is:

inference: deductive: truth preserving and monotonic in chance
inductive: everything else.

On that slightly revised taxonomy, deduction does apply to such problems as calcula-
tion, refutation of a universal law, verification of an existential law, deciding between
two universal laws, deriving predictions from a law, and determining which laws are
logically compatible with the given evidence. And one really does need to resort to
induction to infer a universal law from the observations, to choose among an infinite
range of universal laws, etc. Thus, the revised distinction between induction and deduc-
tion really does provides a revealing, high-level, epistemic distinction among scientific
activities.

4 An Objection
One potential objection is that statistical deduction in the sense proposed is nothing like
traditional, logical deduction, so that traditional insights have essentially nothing to do
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with what is going on in statistical inference. That would be a compelling objection,
if true. Our main object is to show that it isn’t—that the structural insights from
the traditional view, based on propositional information, really do transfer, in a very
direct and precise way, to statistical problems and to statistical inference procedures.
In short, we propose a firm, mathematical bridge between traditional philosophy of
science, based on logic and propositional information, and statistical inference, based
on random samples. Given such a bridge, the epistemological and statistical traffic can
flow back and forth with relative ease.

The relevant, common structure is topological. That may sound a bit jarring to
the philosophical ear, which is habituated to associate deduction and induction with
logic and probability, but it is very apt in the classical setting in which propositional in-
formation bears logical connections with scientific hypotheses. In that setting, the space
of possible, propositional information states one might encounter generates an infor-
mation topology over epistemically possible worlds, in which topological “closeness”
is a matter of informational distinguishability. The deductively verifiable propositions
are just the open sets in that topology. One can also characterize refutability, decid-
ability, learnability in the limit, empirical simplicity, and Ockham’s razor in terms of
the information topology.

Since the information topology is based on propositional information states and
their logical connections with hypotheses, there appears to be no corresponding notion
in statistics, in which propositions about samples are logically independent from the
hypotheses of interest. Our strategy is to sidestep that difficulty by identifying the
unique topology on possible statistical worlds that characterizes verifiability in chance.
Then refutablity in chance, decidability in chance, learnability in the limit in chance,
empirical simplicity of statistical hypotheses, and a statistical version of Ockham’s
razor, all using the same definitions as in the classical setting that assumes deductive
relations between hypotheses and propositional information.

5 Information Topology
Let W be a set of possible worlds of interest. The sense of possibility is broadly
epistemic and pragmatic—they are the worlds one takes seriously as possibilities of
error, and one does not take it as settled, a priori, which of them is actual. A propo-
sition is identified, for present purposes, with the set of possible worlds in which it is
true. Hypotheses and information are both assumed, for now, to be propositional. An
information state is the conjunction of all information available in a given, possible
situation. Let I be the set of all possible information states corresponding to all worlds
and all situations, and let I(w) denote the set of all information states in I that are true
in w. Consider the propositional structure I = (W, I). Say that I is an information
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space iff the following, three assumptions are met.

B.1. The information states in I cover W .

B.2. Any two information states in I that are true in world w are entailed by an
information state that is true in w.

B.3. There are only countably many distinct information states in I.

Assumption B.1 is a conceptual truth. In every situation in a world, one is in some
information state—at worst the uninformative information state W . Assumption B.2
follows from an unstated but intended plenitude assumption that information accu-
mulates. For if one is in true information state E, and there is some true information
state F that does not entail E, then the only way to receive further information that
entails F is to enter a true information state G that entails both E and F . Assumption
B.3 reflects the Turing-like observation that only a discrete range of possible situa-
tions are distinguishable by us, and what is not distinguishable is not information. By
definition, an information space is just a countable topological basis. That directly
connects topology to propositional information.

Let H be the proposition expressed by some hypothesis. The underlying interpre-
tation of I, is that if E is an information state true in w, then diligent inquiry will
turn up information F entailing E eventually. For such an inquirer, one can say that
hypothesis H will be verified in w iff there exists information state E in I(w) such
that E entails H—i.e., E is a subset of H. In topology, w is then said to be an interior
point of H. The interior of H, denoted by intH, is defined to be the set of all interior
points of H. Therefore, intH is the proposition that H will be verified, so int can be
viewed as the modal operator “it will be verified that”.

Hypothesis H is verifiable iff H will be verified in every world in which H is true;
i.e., if H entails intH. That is one of the many equivalent definitions for saying that H
is a topologically open set relative to the topological basis I. The open sets are just
the verifiable propositions. Let V denote the collection of all open propositions relative
to I. Then it is a basic topological fact that V = (W,V) is a topological space.

Verifiability can also be understood methodologically. A propositional inference
method M is a propositional operator that takes information states to conclusions.
Method M is infallible iff there is no world that presents information in which the
method draws a false conclusion. Method M is a verifier of H iff M infers only H
or W , is infallible in every world, and converges to the conclusion H in each world in
whichH is true. ThenH is methodologically verifiable iffH is informationally verifiable
(open). The verifier M simply waits for verifying information and then concludes that
H.1 Closed sets are defined to be the complements of open sets, so they are the

1The strategy for M is also monotonic, since it never drops H after having inferred it.
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refutable propositions. Clopen sets are both open and closed, so they correspond to
decidable propositions. As in the preceding paragraph, one can define methodological
refutability and decidability, which are equivalent to purely informational refutability
and decidability.

The dual operator to interior is the closure operator clH. It says that not-H will
never be verified, which is just to say that H will never be refuted. Of course, H is
never refuted if H is true. What is bad is if H is never refuted even though H is false.
Then a Popperian might say that H poses the problem of metaphysics in w. The
proposition that H poses the problem of metaphysics is called the frontier of H in
topology:

frntH = clH ∩ ¬H.

Again, following Popper, hypothesis H poses the problem of induction in w iff
H is true, but will never be verified. So the proposition that H poses the problem
of induction is just frnt¬H. If H poses neither the problem of metaphysics nor the
problem of induction, then H will be decided one way or the other; otherwise not. The
proposition that H will never be decided is called the boundary of H, definable by:

bdryH = frntH ∪ frnt¬H.

The frontier of H and the frontier of ¬H partition the boundary into the problem of
metaphysics and the problem of induction, respectively—the two fundamental problems
with which Popper begins The Logic of Scientific Discovery .

Popper thought the problem of induction is insuperable for universal theories, and
topology concurs. His response to the problem of metaphysics was to favor more
falsifiable hypotheses. It is a standard topological fact that H is closed (refutable)
iff frntH is empty—i.e., iff there is no possible problem of metaphysics for H. Thus,
Popper’s philosophy makes perfect topological sense.

Popper did make one big mistake. Popper proposed that A is as simple as B iff
the potential falsifiers of B are included among those for A. For us, a potential
falsifier of A is just an information state disjoint from A. Taking the contrapositive,
the information states compatible with A are included among the information states
compatible with B. But then B is never falsified if A is true. So Popper’s simplicity
order (less than means simpler) is topological:

A � B iff A ⊆ clB,

which says that A entails that B will never be refuted. Alas, clA includes not only
worlds in which A is false and never refuted, but also all worlds in which A is not refuted
because A is true. But worlds in which A is true do not make A metaphysical, else the
tautology W would be maximally metaphysical and complex, which it clearly is not.

6



The evident remedy is to replace clB, which says that B will never be refuted (possibly
because B is true) with frntB, which says that B poses the problem of metaphysics.

A � B iff A ⊆ frntB.
The revised definition has many virtues. First, every refutable (closed) proposition
is maximally simple. Second, W is trivially closed, so it is also maximally simple.
Third, the definition is notationally invariant (grue-proof). Fourth, the definition can
be glossed as saying that the problem of induction arises from A to B, since however
A is true, all resulting information is compatible with the possibility that B is true and
A is false. That explains directly the relevance of simplicity to inductive reasoning.

Popper was right that favoring refutable hypotheses at each stage avoids the prob-
lem of metaphysics. He was also right that, given that one faces the problem of meta-
physics, one could end up stuck with a metaphysical falsehood forever. But it hardly
follows that the best truth-finding strategy is to favor refutable hypotheses. Science has
repeatedly dealt with violations of Ockham’s razor by giving up on complex hypothe-
ses whose complex effects have taken too long to appear—e.g., failure of the classically
predicted ether drift to appear prior to 1905. Since one can recover from error either
way, favoring the simpler hypothesis over the complex one sounds like a mere case of
robbing Peter to pay Paul. So what mandates favoring the simpler theory, so far as
finding the truth is concerned? Call that Popper’s gap.

Here is an answer, based on the revised definition of simplicity. Suppose that,
contrary to Ockham’s razor, one were to favor B more complex than A when A is still
compatible with available information. Then there is a relevant possibility w in which
A is true and B is false. On pain of not converging to the truth at all, the scientist
must eventually reverse opinion from B to A in w. But since the scientist can only
see the available information, there is some information state E true in w on which
the scientist reverses opinion back to A. By the definition of simplicity, information
E does not rule out A. So there is some world in which A is true such that, on pain
of not converging to the truth at all, the scientist reverses opinion back to B. So the
Ockham violator’s reward for favoring complex B over simple A is a cycle of opinion
from B to A to B in a world in which the original conclusion B was true. It is not, after
all, a matter of robbing Peter to pay Paul. Prematurely favoring Peter robs Peter! So
given that one converges to the truth at all, avoidance of cycles of opinion (a kind of
monotonicity requirement) mandates Ockham’s razor.

Most scientific hypotheses are neither verifiable nor refutable, but have a less famil-
iar topological property of great methodological importance. Consider the hypothesis
H, which says:

Y = αX2 + βX.

Suppose that the truth is:
Y = βX.
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Hypothesis H is not verifiable, because finitely many inexact observations along a
parabola are compatible with a cubic function with a very small cubic term. Hy-
pothesis H is not refutable, because the truth might be linear, in which case inexact
measurements would never rule out arbitrarily flat parabolas. But H does have this
important property: however H is true, one receives, eventually, information ruling out
all simpler laws, after which H would be refuted if H were false. In general, say that
H is verifutable iff H entails that H will become refutable in light of further informa-
tion. In topology, H is said to be locally closed. Local closure is the characteristic
epistemological property of concrete, scientific hypotheses and models.

Scientific paradigms or research programs are supposedly not even verifutable—they
must be articulated with auxiliary assumptions of increasing complexity to make them
verifutable. That familiar idea motivates the concept of a limiting open proposition,
which is a countable union (disjunction) of locally closed propositions that may be
viewed as its possible, concrete articulations.

Limiting open propositions are closely connected to the concepts of epistemic access,
empirical underdetermination, and learnability. Say that H is decidable in the limit
if there exists a method that, in every possible world, converges to H if H is true and to
¬H if ¬H is true. It is a basic result, proved independently by a number of authors in
philosophy and informatics (de Brecht and Yamamoto [2009], Genin and Kelly [2015],
and Baltag et al. [2015]), that H is decidable in the limit iff H and ¬H are both
countable unions of locally closed sets—i.e., iff H and ¬H are both research programs!
That implies that the catch-all hypothesis “neither H nor ¬H” is off the table, either
by presupposition or by assumption, and explains why science typically focuses on
competitions between two salient research programs. If the catch-all hypothesis is
taken seriously, one can still verify research program H in the limit, in the sense
thatM converges to an articulation of H iff H is true. Otherwise, M may cycle forever
through alternative articulations of H. The converse is also true—verification in the
limit is demonstrably possible only for research programs.

6 Transition to Statistics
Having illustrated the topological structure behind traditional issues in the philosophy
of science, we turn to the problem of transferring that entire story to statistics, by
identifying the unique topology on probabilistic worlds that characterizes statistical
verifiability. Then, although there is no such thing as propositional information in
statistics, it is nonetheless just as if there were.

In statistical inference, one starts with a set Ω of sample points. Let B be a
topological basis on Ω and let F be the sigma field that results from closing B under
countable union and complementation. The setW of possible statistical worlds is some
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collection of probability measures over measurable space (Ω,F). Evidence consists of
a random sample of size n from Ω, so there is typically no logical connection between
the sample and the world from which it is sampled—anything goes.

A statistical inference methodM draws propositional conclusions from samples
of arbitrary size, rather than from propositional information.2

Let α > 0 be a given, small tolerance for chance of error. Statistical inference
method M statistically verifies H at error bound α > 0 iff in each world w:

1. M produces only conclusion H or conclusion W ;

2. M converges in chance to conclusion H if H is true;

3. M concludes W with chance > 1− α if H is false.

The bound α is said to be the significance level of M . Say that H is statistically
verifiable iff there exists an α verifier for H, for every α > 0.3

Method M is a limiting statistical α verification method for H iff in each world w:

1. M converges in probability to a subset H ′ of H, if H is true;

2. The chance that M infers H ′ converges to zero, for each subset H ′ of H, if H is
false.

Here is the main result.

Proposition 1 (Genin and Kelly [2017]). Under a weak and natural condition on W ,4
there exists a unique topology on W such that:

1. H is statistically verifiable iff H is open;

2. H is verifiable in the limit iff H is a countable disjunction of locally closed sets.
2There is one further regularity condition. For each answer produced by the method, there is the

zone of possible samples over which the answer is produced. In all real applications of statistics, the
probability that a sample hits exactly on the boundary between two such zones is zero, so we require
M to have that property.

3Nothing in the following development goes wrong if one also requires α to go monotonically to 0
with sample size.

4The “weak and natural condition” is that the underlying topology on which probability measures
are defined has a basis for which every probability measure assigns probability zero to the boundary
of every basis element. Call that the feasible basis condition. For example, if the sample space is the
real line with open intervals as the basis, then every continuous distribution assigns zero probability
the endpoints of a given open interval. If the sample space is discrete, then there is already a clopen
basis, so every collection of measures satisfies the feasible basis condition.
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The final question concerns the identity of the unique information topology of sta-
tistical inference. If it is so important, what is it? It turns out to be the most familiar
and widely employed topology on probability, called the weak topology. Every topol-
ogy is uniquely definable in terms of its closure operation. For the weak topology, world
p is in clH iff there exists a sequence of statistical worlds (pn : n ∈ N) in H such that
for all statistical methods M :

limn→∞pn(M 6= H) → p(M 6= H).

Thus, the weak topology is just the topology that tracks the problem of induction for
arbitrary, feasible statistical methods.

With that bridge in place, the topological insights of traditional philosophy of sci-
ence flow with only minor resistance into the statistical domain. For example, H is
statistically verifiable in the limit iff H is a countable union of propositions that are
locally closed in the weak topology; H is statistically refutable in the limit iff ¬H is
limiting open; and H is statistically decidable in the limit iff H and ¬H are both
countable unions of locally closed propositions.

Another illustration is Ockham’s razor. Define empirical simplicity just as before,
but in terms of the weak topology on probability measures. It is still the case that
simpler hypotheses pose the (statistical) problem of induction with respect to more
complex ones, so the underlying motivation is exactly the same. It remains to define a
statistical version of Ockham’s razor. It doesn’t work to speak of simplest hypotheses
given current information, since all hypotheses are. But one can still define Ockham’s
α-razor as the principle that the method’s chance of producing an answer more complex
than the true answer is bounded by α, in all possible worlds—a principle that happens
to be equivalent to the usual version of Ockham’s razor in the case of propositional
information. An α-cycle of opinions is performed (in chance) if the chance of producing
answer H drops by more than α, the chance of producing some alternative hypothesis
G rises by more than α thereafter, and then the chance of producing H again rises by
more than α. Then:

Proposition 2. If you violate Ockham’s α-razor, then:

1. either you fail to converge to the truth in chance at all,

2. or nature can force you into an avoidable α-cycle of opinions in a world that
satisfies the hypothesis on which the violation occurred.

7 Conclusion
The trouble with the traditional distinction between inductive and deductive infer-
ence is that it fails to track crucial epistemological analogies between propositional and
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statistical reasoning. Indeed, it has become scientifically irrelevant—one doesn’t even
see the terms in statistics and machine learning. We have proposed what we take to
be a more useful way to talk. On that proposal, the distinction between statistical
inductive and deductive inference is ubiquitous and revealing. Rejecting a point null
hypothesis is deduction; accepting it is induction. Confidence intervals are deduction.
Non-experimental causal orientation of linear causes is induction. Estimating correla-
tions is deduction. Inferring independence is induction. Estimating the parameters of
a model is deduction. Inferring a model is induction. Experimental causal orientation
is deduction. Actual prediction is deduction. Counterfactual prediction is induction.
These are fundamental epistemic facts that should be familiar to everyone employing
the techniques.

Regarding future work, we would like the proposed analogy between propositional
and statistical deduction to extend to monotonicity. Monotonicity is a recognized
feature of deductive logic. It is also attracting attention in statistics, since the probable
(true) conclusion of a non-monotonic method may be less probable as sample size
increases [Chernick and Liu, 2012]. As defined above, a statistical verification method
need not converge to H monotonically in chance. Our current results suggest that
monotonicity in chance up to a slop factor α is achievable.
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