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Chapter 1

Introduction

1.1 The Idea of Progress

Scientific progress has often been compared to a mounting tide
. . . Whoever casts a brief glance at the waves striking a beach does not
see the tide mount, he sees a wave rise, run, uncurl itself, and cover a
narrow strip of sand, then withdraw by leaving dry the terrain which it
had seemed to conquer; a new wave follows, sometimes going a little
farther than the former wave. But under this superficial to-and-fro
motion, another movement is produced, deeper, slower, imperceptible
to the casual observer; it is a progressive movement continuing steadily
in the same direction and by virtue of it the sea constantly rises.
[Duhem, 1914]

The justification of inductive method is the problem Hume left to posterity.
Two centuries after Hume’s Treatise, Whitehead [1948] called the problem “the
despair of philosophy.” If it could not be convincingly demonstrated that “in-
stances of which we have had no experience, must resemble those of which we
have had experience,” [1739, Treatise 1.3.6] then it is altogether implausible that
Francis Bacon could derive his axioms from “particular events in a gradual and
unbroken ascent” [1645, Novum Organum, 1.19] or that Descartes could claim
to have deduced, like the geometers he admired, natural laws that “we cannot
doubt . . . are strictly adhered to in everything that exists or occurs in the world”
[1637, Discourse, Part V]. Although the lesson is still only partially digested,
Hume taught us that inductive inferences are fallible. If science makes progress,
it is not by the monotonic accumulation of certain truths. Hume himself was
a believer in scientific progress, but he gave succor to the enemies of Enlight-
enment, who felt that they had in him an unwitting ally in the camp of their
foes [Berlin, 1980]. Methodology has never fully recovered. There remains no
convincing explanation of what, if not Cartesian certainty, the methodological
advantage of science is supposed to be. This dissertation is aimed at providing
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8 CHAPTER 1. INTRODUCTION

such an explanation.

Niiniluoto [2015] divides early twentieth century attempts at justification of
inductive method into the synchronic and diachronic schools.1 In formal epis-
temology, the synchronic school remains the dominant paradigm, and has many
able defenders. Synchronic theorists have proposed and studied confirmation
relations between hypothesis and evidence [Hempel, 1945, Carnap, 1945], the
rationality, or coherence, of systems of beliefs [Savage, 1972], and strategies
for maximizing epistemic utility [Levi, 1967]. Broadly speaking, the synchronic
project is to characterize which systems of belief constitute ‘rational’ responses
to evidence. The trouble is that there is typically no explanation of how syn-
chronic rationality facilitates progress toward the ultimate goal of science, at
least as understood by realists: true answers to our questions about nature.2

That makes synchronic-school justifications of inductive method rather attenu-
ated. Carnap admits as much, in a startling passage towards the end of his On
Inductive Logic [1945]:

Our system of inductive logic . . . is intended as a rational reconstruc-
tion, restricted to a simple language form, of inductive thinking as
customarily applied in everyday life and in science. . . . An entirely
different question is the problem of the validity of our or any other
proposed system of inductive logic, and thereby of the customary
methods of inductive thinking. This is the genuinely philosophical
problem of induction.

Carnapian reconstruction may systematize our inductive intuitions, but it does
not prove that our intuitions are reliable, or that they are any better at arriv-
ing at true answers to scientific questions than other methods. The “genuinely
philosophical” problem is to prove that our inductive methodology is more re-
liable than alternatives.

The diachronic school, channeling nineteenth century theorists like Whewell,
Peirce, Mach and Duhem, conceived of science as a goal-oriented process, and
investigated the dynamics of scientific change. From the diachronic perspec-
tive, synchronic norms are justified if their consistent application is conducive
toward the goals of science. Popper is perhaps the best-known member of the
diachronic school, portraying science as a process aimed at true theories, and
driven by bold conjectures followed by dogged attempts at refutation. He was a
thoroughgoing fallibilist, believing that the aim of science was not ‘highly con-
firmed’ hypotheses, but highly testable conjectures that stand up to the best
attempts to falsify them. That compelling story nevertheless raises the alarming
possibility that science is nothing but an aimless series of bold mistakes, yielding

1Jonathan Livengood has suggested (personal communication) that one would do better to
distinguish between the internalist and externalist schools. If one were to make a two-by-two
table, this work would fall into the diachronic, externalist cell of the partition.

2The ‘realist’ designation is taken here to apply to anyone who takes truth, or at least
correctness, to be a constitutive goal of inquiry.
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to new, and bolder, mistakes. For that reason, Lakatos [1974] charges that Pop-
per “offers a methodology without an epistemology or a learning theory, and
confesses explicitly that his methodology may lead us epistemologically astray,
and implicitly, that ad hoc stratagems might lead us to Truth.” But similar dif-
ficulties attended more sophisticated articulations of falsificationism. Lakatos
[1970] himself held that a theoretical change was progressive if it made “dra-
matic, unexpected, stunning” new predictions that were subsequently verified.
But we may ask the same question of Lakatos: why think that all this sturm
und drang approaches, or even arrives eventually, at the truth?

Popper appreciated that difficulty, and attempted to develop a theory of truth-
likeness to explain how a series of false theories could nevertheless approach
closer and closer to the truth. He proposed that one theory is more truth-
like than another if it has more true consequences and fewer false consequences.
Lakatos, in the final passage of his Falsification and the methodology of scientific
research programmes, expresses hope that his own sophisticated falsificationism
would lead to increased truthlikeness in Popper’s sense. Sadly, Popper’s defi-
nition of truthlikeness was trivialized by Miller [1974] and Tichý [1974] — on
his account, no false theory is any more truthlike than any other false theory.
The spectacular failure of Popper’s definition founded a philosophical specialty
in less problematic definitions of truthlikeness. That project reaches a high de-
gree of sophistication in Oddie [1986] and Niiniluoto [1987, 1999].3 But even
if the matter of definition were settled, there is no demonstration that scien-
tific method is guaranteed to produce increasingly truthlike theories. Niiniluoto
[1987] addresses the problem of giving “conditions for rationally claiming, on
some evidence, that a statement g is truthlike — or at least is more truthlike
than some other statement — even when the truth h∗ is unknown”. However,
“appraisals of the relative distances from the truth presuppose that an epis-
temic probability distribution . . . is available. In this sense . . . the problem of
estimating verisimilitude is neither more nor less difficult than the traditional
problem of induction.” Therefore, rather than justifying scientific methodol-
ogy by demonstrating that it produces theories of increasing truthlikeness, the
truthlikeness program generates a new problem: demonstrating that a consis-
tent preference for apparently truthlike theories is in fact conducive, in some
objective sense, toward finding the truth.4

Other diachronic theorists, notably Kuhn [1962] and Laudan [1978], abandon
the realist project entirely. Kuhn [1962] famously abjures the idea of scientific
progress as progress towards any goal, opting instead for an analogy with non-
teleological, evolutionary progress:

3I will not attempt a thorough appraisal of this research program, which I consider a
worthy one. Of course, there is the inherent difficulty, of which its proponents are well aware,
of applying metrical notions of closeness where metrical structure may be absent.

4In fact, the problem may be worse. Why bother with computing expected truthlike-
ness, when you already have a probability distribution encoding your opinions about what is
probably true?
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We are all deeply accustomed to seeing science as the one enterprise
that draws constantly nearer to some goal set by nature in advance.
But need there be any such goal? Can we not account for both
science’s existence and its success in terms of evolution from the
community’s state of knowledge at any given time? Does it really
help to imagine that there is some one full, objective, true account of
nature and that the proper measure of scientific achievement is the
extent to which it brings us closer to that ultimate goal? If we can
learn to substitute evolution-from-what-we-do-know for evolution-
toward-what-we-wish-to-know, a number of vexing problems may
vanish in the process. Somewhere in this maze, for example, must
lie the problem of induction.

The introduction to Laudan’s Progress and its Problems [1978] could serve as a
manifesto for the diachronic school. He issues a direct challenge to theorists of
synchronic rationality:

Progress is an unavoidably temporal concept; to speak about sci-
entific progress necessarily involves the idea of a process through
time. Rationality, on the other hand, has tended to be viewed
as an atemporal concept; . . . insofar as rationality and progressive-
ness have been linked at all, the former has taken priority over the
latter—to such a degree that most writers see progress as nothing
more than the temporal projection of a series of individual rational
choices. . . . It will be the assumption here that we may be able to
learn something by inverting the presumed dependence of progress
on rationality.

Laudan conceives of theoretical progress as increased problem-solving effective-
ness, defined by the number of important empirical problems solved minus the
number of important anomalies generated. Alas, Laudan does not explain how
to identify or count problems or anomalies. But what is more objectionable, on
realist grounds, is his willingness to divorce problem-solving effectiveness from
truth: “I do not even believe, let alone seek to prove, that problem-solving abil-
ity has any direct connection with truth or probabilities.” That secures progress
at too high a price. It is the goal of this dissertation to demonstrate that Lau-
dan and Kuhn abandon the realist project too easily. More can be said in favor
of our best inductive methodology, and designing the right notion of progress is
essential to doing so.

A third diachronic tradition descends from Hans Reichenbach [1949] and Hilary
Putnam [1965]. Reichenbach held that it was the goal of science to ascertain
the probabilities with which various empirical outcomes occur. He advocated
the ‘straight rule’ of induction, which, at every finite stage of inquiry, posits
that the probability of an outcome is the relative frequency with which it has so
far been observed to occur. Reichenbach justified the straight rule by proving
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that, on his conception of probability, the posits made by the rule are guaran-
teed to converge to the true probability, so long as any empirical method can.
Putnam [1965] generalized Reichenbach’s so-called ‘pragmatic’ justification, es-
tablishing a general framework in which to analyze the reliability of methods for
investigating any empirical hypothesis. Suppose that H1, H2, . . . are all the pos-
sible answers to an empirical question that are taken to be serious possibilities.
Putnam understood a method for investigating the question to be reliable iff,
in every possible world consistent with the background assumptions of inquiry,
the method converges to Hi iff Hi is true. The investigation of this notion,
which came to be known as logical reliability, reaches a height of sophistication
in Kelly and Glymour [1989], Kelly [1996] and Schulte [1999]. The requirement
of logical reliability is non-trivial, but weak enough to be feasible in genuinely
inductive inquiries, where Cartesian certainty, or even bounds on the objective
chance of error, are impossible to guarantee. Furthermore, the realist goals of
science are placed squarely at the center of the action: the goal of reliabilist
methodology is to establish a connection between inquiry and the true answer
to an empirical question.5 Steel [2010] argues that logical reliabilism justifies in-
ductive inference by giving a mathematical proof that it is a necessary condition
of logical reliability. Since this proof does not rely on any empirical premises, it
escapes Hume’s circle, and gives a deductive means-ends justification of induc-
tive inference.

Indeed, if a method does not even converge to the truth in the limit, it fails to
attain realist goals of inquiry. The perennial criticism of logical reliabilism is
that the connection between inquiry and the truth is too weak — limiting relia-
bility is consistent with all kinds of arbitrary and irrational behavior in the short
run. It is even consistent with the interruption of inquiry by arbitrarily many
dark ages, as imagined by Miller Jr [1959] in A Canticle for Liebowitz. There-
fore the reliabilist can make no significant methodological recommendations.
Carnap makes an early version of this criticism when discussing Reichenbach’s
justification of the straight rule:

Reichenbach is right in the assertion that any procedure which does
not possess the characteristic described above (viz. approximation to
the relative frequency in the whole) is inferior to his rule of induction.
However, his rule . . . is far from being the only one possessing that
characteristic. The same holds for an infinite number of other rules of
induction, e.g. for Laplace’s rule of succession . . . and likewise for the
corresponding rule of our theory of c∗ . . . . However, Reichenbach’s
rule and the other two rules mentioned yield different numerical
values for the probability under discussion, although these values
converge for an increasing sample towards the same limit. Therefore
we need a more general and stronger method for examining and

5Note that the goal is not to converge to a true theory of everything, as Kuhn imagines,
but piecemeal progress on contextually fixed empirical questions.
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comparing any two given rules of induction in order to find out
which of them has more chance of success. [1945, p. 97].

Unfortunately, Carnap never proposes any way of comparing inductive methods
that doesn’t depend essentially on the choice of a prior probability distribu-
tion. A different idea is due to the heirs of Putnam: Schulte [1999] and Kelly
and Glymour [2004]. Deductive methods have two desirable properties: they are
infallible, given true premises, and they are monotonic, in the sense that conclu-
sions are never withdrawn when more premises are added. Inductive methods,
however, are irremediably fallible. They are also non-monotonic: more infor-
mation often induces the withdrawal of previous conclusions. But even though
monotonicity is not feasible in inductive problems, one can still strive to draw
inductive conclusions as monotonically as possible, given the inherent difficulty
of the inductive inference problem one is addressing. If perfect monotonicity
is best, more monotonicity is better. Kelly, Glymour, and Schulte have inves-
tigating norms of maximal monotonicity that require methods to converge to
the truth with as few mind changes, or retractions of opinion, as possible, given
the inherent difficult of the problem. In a series of papers Kelly [2004, 2007,
2011] has also shown every method that minimizes mind changes en route to
the truth satisfies a version of Ockham’s razor. Kelly’s results showed that
a simplicity-guided strategy of conjectures and refutations is logically reliable
and, furthermore, that every logically reliable and mind-change optimal strat-
egy satisfies Ockham’s razor. That demonstrates that the canonical biases of
inductive methodology are necessary for maximally monotonic convergence to
the truth. If progressive inquiry converges to the truth without unnecessary U-
turns and vacillations along the way, then Kelly’s results show that the norms
of standard inductive methodology are necessary for progress. Norms of max-
imally monotonic convergence provide a “middle path” for justifying inductive
practice: they are not so strong as to rule out inductive inference altogether,
and, unlike mere convergence in the limit, they are strong enough to imply sub-
stantive methodological constraints on short-run behavior.

These ideas were expanded and developed in a series of papers [Genin and Kelly,
2015, Kelly et al., 2016, Genin and Kelly, 2018]. In all of these papers, the notion
of simplicity receives a precise new topological formulation. In Genin and Kelly
[2018], we develop two notions of maximally monotonic convergence that refine
mind-change optimality. A sequence of conjectures A1, A2, A3 is a cycle sequence
if each one is incompatible with its predecessor and the last entails the first.6

We prove that conjecturing some simplest answer in response to information is
necessary for avoiding cycles on the way to convergence [2018, Proposition 9.1].
That shows that Ockham’s razor is a necessary condition for avoiding doxastic
cycles on the way to the truth. It also shows that every method that violates
Ockham’s razor must, on some information, conjecture the true answer, only to

6Avoidance of cycles is closely related to avoiding U-shaped learning, which has been
explored by computational learning theorists cf. Carlucci et al. [2005], Carlucci and Case
[2013].
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drop it in favor of a false one, upon receiving additional true information. Ock-
ham violators can be forced into these epistemic regressions only if the truth is
complex, so the argument motivates preferring simplicity especially if the truth
is complicated. Furthermore, for a broad class of problems, we construct meth-
ods that converge to the truth without cycles. That goes some way toward
alleviating methodological pessimism: it is possible to guarantee that inquiry
progress without perennial backsliding into darkness.

Reversal optimality is our second notion of maximal monotonicity. A sequence
of conjectures A1, A2, . . . , An is a reversal sequence if for each i, Ai+1 entails Ac

i .
A reversal sequence is forcible in a problem if every method that converges to
the true answer in the limit must output that sequence on some sequence of true
and increasingly informative information states. The idea is that the forcible
sequences, and only the forcible sequences, are the non-monotonicities that a
method is justified in performing. For the first time, we give a prior-free topo-
logical characterization of all the forcible sequences in a given empirical problem
[2018, Proposition 5.1]. That pins down exactly those non-monotonicities that
an inductive method is justified in performing. We also show that patiently
disjoining equally simple answers is necessary for avoiding retraction sequences
that are not forcible [2018, Proposition 9.2].

Intuitively, progress requires that inquiry approach the truth monotonically, or,
at least, as monotonically as possible. It is certainly not progressive to con-
jecture the truth, only to disavow it on receiving additional true information,
as every Ockham-violator must do in some circumstances. Norms of maximal
monotonicity answer to our intuitive demands on scientific progress, and the
results of Kelly, Schulte, Genin et. al. show that the canons of scientific meth-
dology are necessary for achieving these norms. Furthermore, they do so without
begging the question, since they do not impose any prior probability distribu-
tion on the space of possibilities. That shows that there is some methodological
advantage to scientific practice that is not shared by alternative modes of in-
quiry.

The preceding discussion suggests a systematic approach to questions of induc-
tive methodology. First articulate a spectrum of success concepts of guaranteed
efficient convergence to true answers to empirical questions. Then, character-
ize mathematically the empirical questions for which those success notions are
achievable. Finally, justify methodological norms by proving that they are nec-
essary for achieving corresponding success concepts across a wide range of em-
pirical problems. That approach shares with Levi, Laudan and Kuhn a funda-
mentally eritetic stance—the goal is not a true theory of everything, but efficient
inquiry guided by a question under discussion. However, it departs from the
instrumentalism of Kuhn and Laudan by conceiving of progress as progress to-
ward the true answer. It fulfills the realist demands of Popper and Lakatos by
showing that progress toward the truth is not only possible, but guaranteed, so
long as reliable methods are employed. Finally, it avoids begging the question
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in favor of canonical methods by demonstrating its results without imposing a
potentially question-begging prior probability distribution. Popper wrote that
“while we cannot ever have sufficiently good arguments in the empirical sci-
ences for claiming that we have actually reached the truth, we can have strong
and reasonably good arguments for claiming that we may have made progress
toward the truth” [Popper, 1979, pp. 57-8]. We can do better: we have good
arguments for claiming that science will make progress toward the truth.

Several characteristic features of the framework are worth calling attention to
explicitly.

1. The framework foregrounds key epistemic features of the context of inquiry
that are usually ignored.

A context of inquiry specifies (i) a set of possible worlds (ii) a set of
information states, constituting the possible inputs to inquiry, and (iii)
a partition of the worlds into a set of answers, constituting the desired
outputs of inquiry. Explicit attention to the kind of information that
is available in the problem situation exposes the structure of empirical
underdetermination, which is obscured by treating all propositions equally
as undifferentiated elements of a field of sets on which probabilities are
defined.

2. Topology, rather than logic or probability theory, is the fundamental for-
mal tool.

Verifiability from empirical information is a fundamental notion in method-
ology and the philosophy of science. The structure of verifiability is fun-
damentally topological: the verifiable propositions are exactly the open
sets of a topological space. Therefore, topology is the most perspicuous
setting for studying the structure of empirical inquiry.

3. Results are grounded in objective features of the context of inquiry and
are therefore independent of a choice of language or prior probability dis-
tribution.

Topological structure emerges from the kind of information that is avail-
able in the context of inquiry. Therefore, it is not imposed by subjective
opinion, or linguistic convention.

4. Methodological norms are sensitive to the inherent difficulty of the prob-
lem.

By solving for the inherent topological complexity of an empirical question
it is possible to solve for the strongest feasible success criteria. Therefore
it is possible to systematically impose strong norms where they are fea-
sible, and relax them when they are not. That enables a principled and
systematic right-sizing of epistemic demands to inherent topological com-
plexity. One slogan for such a view is means-ends epistemology [Schulte,
1999] and another is feasibility contextualism.
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5. Successful inquiry consists in efficient convergence to true answers to sci-
entific questions.

The goal of inquiry is not, as Kuhn imagines, a true theory of everything,
but true answers to empirical questions. An answer to a question is not
simply a solution to a puzzle, or a new problem-solving technique, but a
true theory about the world.

6. Methods, rather than theories, are the locus of epistemic justification.

A method is justified by demonstrating that it reliably and efficiently
converges to the true answers to an empirical question. A methodological
norm is justified by demonstrating that all methods violating the norm
are less reliable or less efficient for a broad class of empirical questions.

Criticism of the position of Kelly and his students falls broadly into two cate-
gories. Previous results were obtained under the idealization that input infor-
mation is propositional and logically refutes incompatible possibilities. Some
critics express skepticism that the theory applies in settings where the data ar-
rives in the form of random samples, and strict logical falsification never occurs.
Elliot Sober is representative:

Jeffreys and Popper both suggest that scientists should start by test-
ing simpler theories; if those simpler theories fail, scientists should
move to theories that are more complex. Schulte (1999) and Kelly
(2007) also endorses this policy, arguing that it has a desirable sort
of efficiency. They show that this strategy is optimal with respect to
the goal of minimizing the number of times you will need to change
your mind. It is important to see that Ockham’s razor as a search
procedure does not conflict with Ockham’s razor as a principle for
evaluating the theories at hand. . . . For Kelly and Schulte, the data
tell you whether to accept or reject the theory at hand and this deci-
sion is made without help from Ockham’s razor. According to their
picture, theories are tested one at a time. This may be okay if the
candidate theories you are considering are deductively related to ob-
servations, but when the relationship is probabilistic, I am skeptical
of epistemologies that are non-contrastive [Sober, 2015].

Part of Sober’s objection seems to be a misunderstanding. Ockham’s razor, as
defined in Genin and Kelly [2015], Kelly et al. [2016], Genin and Kelly [2018]
is not a search procedure, but a normative constraint on theory choice. It is
precisely a “principle for evaluating the theories at hand”: never choose a theory
if a strictly simpler one is compatible with current information. That maxim
underdetermines a search procedure, since, in the not atypical situation where
there is more than one simplest theory compatible with the data, it does not
even determine what theory one should choose at a single stage of inquiry. On
the other hand, Sober’s worry about whether the justification works when data
fail to ever logically falsify theory is well-placed. How can we even state the
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Ockham constraint, stated in terms of theories compatible with current infor-
mation, if all probabilistic theories are logically compatible with every possible
random sample? That concern is dealt with decisively in this dissertation by
generalizing the reliabilist framework to accomodate statistical theories and ran-
dom samples. The strategy for executing that generalization is described in the
subsequent sections of the introduction, but I foreshadow some of its novel con-
sequences here.

The transition to the statistical framework allows for the articulation of new
norms of progress. Previously, philosophers of science have tried to discern
some mark by which one could judge whether a change from theory H1 to H2

is progressive. If both theories are false, perhaps the second is ‘closer’ to the
truth, in some sense? The hope would be that scientific method is justified
because it tends to produce theories that progress toward the truth. I propose
a different, more direct, means of investigating the progressiveness of induc-
tive method. Suppose, as before, that H1, H2, . . . are competing probabilistic
theories of some phenomena under investigation. Say that a method is reli-
able iff, in every possible world consistent with the background assumptions
of inquiry, the method converges in probability to Hi iff Hi is true. Say that
a reliable method is progressive if, no matter which theory is true, the objec-
tive chance that it outputs the true theory is strictly increasing with sample
size. In other words, the more data the scientist collects, the higher the chance
that her method outputs the true theory. That is a sense in which a method
can be progressive, even if it is meaningless to ask whether two of its succes-
sive outputs represent progress toward the truth. Progressiveness seems like a
straightforwardly desirable property, but it is not always feasible. Nevertheless,
it ought to be a regulative ideal that we strive to approximate. Say that a
reliable method is α-progressive if, no matter which theory is true, the chance
that it outputs the true theory never decreases by more than α. That property
ensures that collecting more data cannot set your method back too badly. In
what follows (Theorem 3.6.3) I prove that for typical problems, there exists a
reliable, α-progressive method for every α > 0. The method proceeds by a
schedule of simplicity-guided conjectures and refutations. That demonstrates
that a carefully calibrated Popperian methodology can ensure that the degree
of backsliding is arbitrarily low. Furthermore, I prove that every α-progressive
method must obey a probabilistic version of Ockham’s razor (Theorem 3.6.4).
That gives a new, prior-free justification for simplicity bias in statistical inquiry.

The second common objection to reliabilist justification of inductive method
is that global features of the path of inquiry can give no good reason to be-
lieve the predictions of our current best theories. Here Fitzpatrick [2013a] is
representative:

Logical reliabilism . . . allows that we may have preferences for certain
theories over others, given the available data—those selected by ef-
ficient logically reliable methods. Unlike Popperian falsificationism,
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Figure 1.1: The chance of outputting the true theory, as sample size increases,
for a .05-progressive and a .25-progressive method.

it also offers a means-end justification for doxastic commitment to
these theories. However, this warrant for belief obtains only relative
to the goal of efficient long-run convergence to the truth. Such long-
run strategic consideration are completely unrelated to the short-run
predictive accuracy of the theories in question . . . Logical reliabil-
ism thus cannot explain why it is rational to use our best theories
in practical prediction, and it cannot underwrite the obvious con-
fidence that scientists and ordinary folk have in the predictions of
these theories (305).

I can think of two ways of answering such objections. The first way is to simply
deny that there is anything more to underwriting our beliefs in the predictions
of our best theory than justifying the methods used to arrive at the theory.
Reliabilism shifts the locus of justification to method, rather than theory or
prediction. Reliabilist analysis demonstrates the sense in which our methods
can be made progressive, and proves that violating the canons of methodology
makes inquiry vulnerable to unnecessary backsliding into error. That does not
prove Hume wrong, or give reason to believe that our best theories must be
true, or that their predictions are accurate. Any such reasons must appeal to
substantive assumptions, even if they are disguised as subjective probability
distributions. Without appealing to such assumptions, logical reliabilism gives
a non-trivial, non-question-begging justification of our best inductive methods.
The reason to rely on the predictions issued by our best theories is just this: we
made them from the theories output by our best methods, which are justified
by a reliability analysis.

The second way engages more thoroughly with the eritetic and contextual fea-
tures of reliabilist analysis. Part of the rhetorical strength of Fitzgerald’s ob-
jection is due to a subtle shift of the question in context. Settings in which
questions of theory choice are salient are different from those in which questions
of prediction are salient. A thorough-going contextualism is sensitive to this
shift in question, and recommends that one use the most reliable methods to
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answer the question at hand. That raises the possibility that reliable methods
for answering theory-choice questions are not necessarily the most reliable for
questions of short-run prediction. In frequentist statistics that observation goes
under the slogan that “all models are false,” which is taken to mean that one
ought not even try to identify true models, and attempt instead only to mini-
mize prediction error.7 For that reason, frequentists recommend methods like
Akaiake’s Information Criterion (AIC), which are not guaranteed to converge
to the true model even in the limit of infinite data. That defect is supposedly
made up for by the fact that the methods guarantee good predictive accuracy
on future data [Forster and Sober, 1994]. There are many reasons to doubt
this cover story. There is no prior-free argument demonstrating that AIC-type
methods are guaranteed to have better predictive accuracy than naive alter-
natives, even in expectation [Forster, 2002, Leeb and Pötscher, 2005, Kelly,
2011]. The best arguments for these methods suggest that they may minimize
“risk-inflation” [Foster and George, 1994], or decision-theoretic regret [Droge,
1998], but fall short of demonstrating that the methods are more predictively
accurate. Even if some argument can be made without begging the question, it
would apply only to passive (non-interventional) prediction on future samples
taken from the same generating distribution used to estimate the prediction
methods. That is a very attenuated sense of prediction, which does not cap-
ture the robust sense of prediction prevalent in sciences that aim to predict the
results of interventions. In fact, there is good reason to believe that it is im-
possible to accurately estimate the effects of interventions without getting the
causal model right, especially when inferences are made from non-experimental
data [Kelly and Mayo-Wilson, 2010]. In difficult causal inference problems,
there is simply no better way to get good predicative accuracy than to get the
model right — methods that efficiently identify the correct model are therefore
uniquely justified by a reliabilist analysis. For these reasons, causal inference
from observational data is the premier example of Chapter 3.

1.2 Statistical Verifiability and Falsifiability

The relations between probability and experience are also still in need
of clarification. In investigating this problem we shall discover what
will at first seem an almost insuperable objection to my methodological
views. For although probability statements play such a vitally
important role in empirical science, they turn out to be in principle
impervious to strict falsification. Yet this very stumbling block will
become a touchstone upon which to test my theory, in order to find out
what it is worth [Popper, 1959, p. 133].

The framework of logical reliabilism, as articulated in Kelly [1996], and more

7The slide from “theory” to “model” reflects the instrumentalist perspective that models
are not to be inferred, but simply used for prediction.
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recently in Baltag et al. [2016], and Genin and Kelly [2015], Kelly et al. [2016],
and Genin and Kelly [2018], relies heavily on the notions of verification and
falsification. That suggests that logical reliabilism does not have the conceptual
resources to address actual scientific inference, where strict logical falsification
hardly ever occurs. That is the core of Sober’s [2015] worry about theories
that make only probabilistic predictions. As the epigraph to this section shows,
Popper was also well aware that probabilistic theories posed an equal challenge
for his falsificationism. Nevertheless, there are strong analogies between ‘naive’
falsificationism, and standard practice in frequentist hypothesis testing. For
example, a standard statistical test of a sharp null hypothesis rejects when the
data are very improbable under the null hypothesis. Such a procedure has a
very low chance of rejecting the null hypothesis in error. That falls slightly
short of, but is closely analogous to, the infallibility of rejecting a universal law
when it is refuted. Alternatively, a standard statistical test of a simple or sharp
statistical hypothesis has an arbitrarily high chance of accepting it in error.
That is similar to the fallibility of inferring a universal hypothesis from finitely
many instances. Such analogies are natural and sometimes explicit in statistics.
For example [Gelman and Shalizi, 2013]:

. . . the hypothesized model makes certain probabilistic assumptions,
from which other probabilistic implications follow deductively. Sim-
ulation works out what those implications are, and tests check whether
the data conform to them. Extreme p-values indicate that the data
violate regularities implied by the model, or approach doing so. If
these were strict violations of deterministic implications, we could
just apply modus tollens to conclude that the model was wrong; as
it is, we nonetheless have evidence and probabilities. Our view of
model checking, then, is firmly in the long hypothetico-deductive
tradition, running from Popper (1934/1959) back through Bernard
(1865/1927) and beyond (Laudan, 1981).

Statistical falsification, Gelman and Shalizi suggest, is all but deductive.8 But
how extremal, exactly, does a p-value have to be for a test to count as a falsifi-
cation? Popper was loathe to draw the line at any particular value:

. . . a physicist is usually quite well able to decide whether he may
for the time being accept some particular probability hypothesis as
‘empirically confirmed’, or whether he ought to reject it as ‘prac-
tically falsified’ . . . It is fairly clear that this ‘practical falsification’
can be obtained only through a methodological decision to regard

8Some frequentists go even further. In their response to the American Statistical Associa-
tion’s controversial statement on p-values, Ionides et al. [2017] distinguish deductive reasoning
“based on deducing conclusions from a hypothesis and checking whether they can be falsified”
and inductive reasoning “which permits generalization, and therefore allows data to provide
direct evidence for the truth of a scientific hypothesis.” Furthermore, they write, “it is held
widely . . . that only deductive reasoning is appropriate for generating scientific knowledge.
Usually, frequentist statistical analysis is associated with deductive reasoning and Bayesian
analysis is associated with inductive reasoning.”
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highly improbable events as ruled out . . . But with what right can
they be so regarded? Where are we to draw the line? Where does
this ‘high improbability’ begin? [Popper, 1959, p. 182]

I suggest that such embarrassing questions can be avoided if, instead of ask-
ing ‘what counts as a statistical falsification?’, we ask ‘which hypotheses are
statistically falsifiable?’. Consider the archetypical examples of falsifiable hy-
potheses: universal hypotheses like ‘all ravens are black’, or co-semidecidable
formal propositions like ‘this program will not halt in a finite number of steps’.
Although there is no a priori bound on the amount of observation, computa-
tion, or proof search required, these hypotheses may be falsified by suspending
judgement until the relevant hypothesis is decisively refuted by the provision of
a non-black raven, a halting event, or a valid proof. I want to call attention to
several properties of paradigmatic falsification methods.

Infallibility: Output conclusions are true.

By suspending judgement until the hypothesis is logically incompatible with the
evidence, falsifiers never have to ‘stick their neck out’ by making a conjecture
that might be false.

Monotonicity: Logically stronger inputs yields logically stronger conclusions.

Typical falsifiers never have to retract their previous conclusions; their conjec-
ture at any later time always entails their conjecture at any previous time. In
the ornithological context, conjectures made on the basis of more observations
always entail conjectures on made on the basis of fewer—once a non-black raven
has been observed, the hypothesis is decisively falsified. In the computational
context, conjectures made on the basis of more computation always entail con-
jectures made on the basis of less—once the program has entered a halting state,
it will never exit again.

Limiting Convergence: The method converges to ¬H iff H is false.

If all ravens are black, the falsifier may suspend judgement forever; but if there
is some non-black raven, diligent observation will turn up a falsifying instance
eventually. Similarly, if the program eventually halts, the patient observer will
notice.

I propose that statistical verifiability and falsifiability will be found if we look
for the minimal weakening of these paradigmatic properties that is feasible in
statistical contexts. First, some definitions.9 Inference methods output con-
jectures on the basis of input information. Here ‘information’ is understood
broadly. One conception of information, articulated explicitly by Bar-Hillel and
Carnap [1953] and championed by Floridi [2005, 2011], is true, propositional

9The definitions in this section are intentionally rather schematic. Hopefully this will aid,
rather than hinder, comprehension. All definitions are formalized in subsequent chapters.
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semantic content, logically entailing certain relevant possibilities, and logically
refuting others. Call that the propositional notion of information. Proposi-
tional information is the standard notion in modal and epistemic logic as well
as many related formal fields. A second conception, ubiquitous in the natural
sciences, is random samples, typically independent and identically distributed,
and logically consistent with all relevant possibilites, although more probable
under some, and less probable under others. Call that the statistical notion of
information.

Statistical methods cannot be expected to be infallible. We liberalize that re-
quirement as follows:

α-Infallibility: For every sample size, the objective chance that the output
conclusion is false is bounded by α.

The α-infallibility property is closely related to frequentist statistical inference.
A confidence interval with coverage probability 1 − α is straightforwardly α-
infallible: the chance that the interval excludes the true parameter is bounded
by α. A hypothesis test with significance level α is also α-infallible, so long as
one understands failure to reject the null hypothesis as recommending suspen-
sion of judgment, rather than concluding that the null hypothesis is true. The
chance of falsely rejecting the null is bounded by α, and failing to reject outputs
only the trivially true, or tautological, hypothesis.

We first define a weaker notion. A method verifies hypothesis H in the limit by
converging, on increasing information, to H, iff H is true. On the propositional
conception of information, a method L(·) converges on increasing information
to H iff in all possible worlds, there is some true information E, such that on
any logically stronger true information F entailing E, L(F ) entails H. On the
statistical conception of information, a method L(·) converges on increasing in-
formation to H if in any possible world w, the chance that L(·) outputs H in
w at sample size n converges to 1 as sample size increases. A method refutes
H in the limit if it verifies not-H in the limit. A method decides H in the limit
if it verifies H and not-H in the limit. Hypothesis H is verifiable, refutable, or
decidable in the limit iff there exists a method that verifies, refutes or decides
it in the limit.

Verification in the limit is a relatively undemanding concept of success — it
is consistent with any finite number of errors and volte-faces prior to conver-
gence. Verification is a stronger success notion. Consider the following cycle of
definitions.10

10The following are only proto-definitions, leaving many things unspecified. The notion
of verification in the limit is here a free parameter: compatible notions include convergence
in propositional information, convergence in probability and almost sure convergence. The
notion of α-infallibility is also parametric: it can mean that the chance of error at any sample
size is bounded by α, or that the sum of the chances of error over all sample sizes is bounded
by α. Each of these concepts will be developed in detail in the following. These parametric
details are omitted here to expose the essential differences between the three concepts.
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V1. Hypothesis H is verifiable iff there is a monotonic, infallible method M
that verifies H in the limit.

V1.5 Hypothesis H is verifiable iff there is a method M that verifies H in the
limit, and for every α > 0, M is α-infallible.

V2. Hypothesis H is verifiable iff for every α > 0 there is an α-infallible method
that verifies H in the limit.

Concept V1 is the familiar one from epistemology, the philosophy of science,
and the theory of computation. Our motivating examples are all of this type.
These may be falsified by suspending judgement until the relevant hypothesis
is logically refuted by information. Although there is no a priori bound on the
amount of information (or computation) required, the outputs of a verifier are
guaranteed to be true, without qualification.

Concept V1.5 weakens concept V1 by requiring only that there exist a method
that is infallible with probability one. Hypotheses of type V2 are less frequently
encountered in the wild.11 Concept V1.5 is introduced here to smooth the tran-
sition to V2.

V2 weakens V1.5 by requiring only that for every bound on the chance of error,
there exists a method that achieves the bound. Hypotheses of this type are
ubiquitous in statistical settings. The problem of verifying that a coin is biased
by flipping it indefinitely is an archetypical problem of the third kind. For any
α > 0 there is a consistent hypothesis test with significance level α that veri-
fies, in the third sense, that the coin is biased. Moreover, it is hard to imagine
a more stringent notion of verification that could actually be implemented in
digital circuitry. Electronics operating outside the protective cover of Earth’s
atmosphere are often disturbed by space radiation—energetic ions can flip bits
or change the state of memory cells and registers [Niranjan and Frenzel, 1996].
Therefore, even routine computations performed in space are subject to non-
trivial probabilities of error, although the error rate can be made arbitrarily
small by redundant circuitry, error-correcting codes, or simply by repeating the
calculation many times and taking the modal result. Electronics operating on
Earth are less vulnerable, but are still not immune to these effects.

Concept V2 provides only a partial statistical analogue for V1, since issues of
monotonicity are ignored. A statistical analogue of monotonicity is suggested
by considerations of replication. Consider the following situation. A group of

11For a contrived example, suppose it is known that random samples are distributed uni-
formly on the interval (µ− 1/2, µ+ 1/2), for some unknown parameter µ. Although samples
may land outside the interval, they only do so with probability zero. Let H be the hypothesis
that the true parameter is not µ. Let M be the method that concludes H if some sample
lands outside of the interval (µ−1/2, µ+1/2), and draws no non-trivial conclusion otherwise.
Then, M is a deductive verifier of the second type, although not of the first. Clearly, every
verifier of the first type is a verifier of the second type.
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researchers propose to investigate whether Drug A is better at treating migraine
than conventional treatments. Before receiving the funding, the researchers do
an analysis of their statistical method and conclude that if Drug A is better
than the conventional alternative, the chance that their method rejects the null
hypothesis of no effect is greater than 50%. The funding agency is impressed,
providing enough funding to perform a pilot study at sample size 100. Elated,
the researchers perform the study, and correctly reject the null hypothesis. Now
suppose a replication study is proposed at sample size 150, but the objective
chance of rejecting has decreased to 40%. That means that the chance of reject-
ing correctly, and thereby replicating successfully, has gone down, even though
the first study was correct, and investigators propose going to the trouble and
expense of collecting a larger sample! Such methods are epistemically defective,
and more monotonic methods ought to be preferred. Accordingly, consider the
following statistical norm

Monotonicity in chance: If H is true, then the objective chance of out-
putting H is strictly increasing with sample size.

Unfortunately, strict monotonicity is often infeasible. Nevertheless, it should
be a regulative ideal that we strive to approximate. The following principle
expresses that aspiration:

α-Monotonicity in chance: If H is true, then for any sample sizes n1 < n2,
the objective chance of outputting the true answer does not decrease by
more than α.

That property ensures that collecting a larger sample is never a disastrously
bad idea. Equipped with a notion of statistical monotonicity, we state the final
definition in our cycle:

V3. Hypothesis H is verifiable iff for every α > 0 there is an α-infallible and
α-monotonic method that verifies H in the limit.

V3 seems like a rather modest strenghtening of V2. Surprisingly, many stan-
dard frequentist methods are α-infallible, but not α-monotonic. Chernick and
Liu [2002] noticed non-monotonic behavior in the power function of standard
hypothesis tests of the binomial proportion, and proposed heuristic software
solutions. That defect would have precisely the bad consequences that inspired
our statistical notion of monotonicity: attempting replication with a larger sam-
ple might actually be a bad idea! That issue has been raised in consumer safety
regulation, vaccine studies, and agronomy [Schuette et al., 2012, Musonda, 2006,
Schaarschmidt, 2007]. But Chernick and Liu [2002] have only noticed the tip
of the iceberg—similar considerations attend all statistical inference methods.
One of the results of this dissertation (Theorem 3.3.1) is that V3 is feasible
whenever V2 is.
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1.3 The Topology of Inquiry

geometric logic [topology] is the logic of finite observations [Abramsky, 1987].

A central insight of Abramsky [1987], Vickers [1996], Kelly [1996] is that verifi-
able propositions of type V1 enjoy the following properties:

T1. If H1, H2 are verifiable, then so is their conjunction, H1 ∩H2.

T2. If H is a (potentially infinite) collection of verifiable propositions, then
their union, ∪H, is also verifiable.

Together, T1 and T2 say that verifiable propositions of type V1 are closed under
disjunction, and finite conjunction. Why the asymmetry? For the same reason
that it is possible to verify that bread will continue to nourish for any finite
number of days in the future, but not possible to verify that it will nourish
forever. It is also important to notice what T1 and T2 do not say: if H is
verifiable, its logical complement may not be. To convince yourself of this it
suffices to notice that it is possible to verify that bread will cease to nourish
someday, but not that it will continue to nourish forever. Jointly, T1 and T2
express the fact that the collection of all propositions of type V1 constitute the
open sets of a topological space.12 Sets of greater topological complexity are
formed by set-theoretic operations on open sets. The central point of Kelly
[1996] is that degrees of methodological success correspond exactly to increas-
ingly ramified levels of topological complexity, corresponding to elements of the
Borel hierarchy:

The Borel hierarchy is a system of mathematical cubbyholes [that]
provide a kind of shipshape mathematics, in which there is a place
for everything, and everything is put in its place. Each cubbyhole
reflects a kind of intrinsic, mathematical complexity of the objects
within it. . . . The striking fact is that methodological success can be
characterized exactly in terms of [these] cubbyholes [Kelly, 1996].

The open sets are exactly the verifiable hypotheses; complements of open
sets, called closed sets, are exactly the refutable hypotheses; sets that are both
open and closed, called clopen sets, are exactly the decidable hypotheses. Higher
levels of topological complexity correspond to inductive notions of methodologi-
cal success.13 Locally closed sets are sets that can be expressed as an intersection
of an open and a closed set.14 Countable unions of locally closed sets, known as

12A topological space T is a structure 〈W,V〉 where W is a set, and V is a collection of
subsets of W closed under disjunction and finite conjunction. The elements of V are called
the open sets of T .

13By inductive success, I mean any notion where the chance of error is unbounded in the
short run.

14Although the epistemic interpretation of locally closed sets is significant, we introduce
them here only as a building block for sets of higher complexity. Discussion is postponed until
Section 2.3.
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Σ0
2 sets, are exactly the hypotheses verifiable in the limit. Their complements,

known as Π0
2 sets, are exactly the hypotheses refutable in the limit. Sets which
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Figure 1.2: Pictured below is a hierarchy of topological complexity and corresponding
notions of methodological success. The set of all open sets is referred to as Σ0

1; the set of all
closed sets as Π0

1; and the set of all clopen sets as ∆0
1 = Σ0

1 ∩ Π0
1. Depending on whether

the Σ0
1 sets are propositions of type V1 or V2, we get the logical (left) and statistical (right)

hierarchies. Sets of greater complexity are built out of Σ0
1 sets by logical operations, e.g.
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2 sets are countable unions of locally closed sets. Inclusion relations between notions of
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The preceding sketches a general complexity theory for empirical inquiry. The
theory is extended straightforwardly from individual hypotheses, to empirical
questions. Given the topological complexity of the answers, the problem of
finding the true answer to the question has an intrinsic difficulty, in that some
questions allow one to find the truth in a very strong sense and others only in
weaker senses. Deductive questions, in which every answer is clopen, have the
property that one can eventually infer the true answer to the question, without
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ever risking error. Some inductive questions have the property that one can
converge to belief in the true answer, after some reversals of opinion along the
way, even though one cannot do so with no reversals of opinion. So inductive
questions are, in a definite sense, intrinsically harder than deductive questions.

That perspective gives rise to a general view we call feasibility contextualism.
According to feasibility contextualism, an inferential strategy is epistemically
justified insofar as it achieves the best achievable truth-finding performance
for the given question, in light of its inherent topological complexity. Weaker
connections to the truth are justified when stronger connections are impossi-
ble. In particular, inductive methods are justified when deductive methods are
impossible. Thus, pace philosophical tradition, the infeasibility of deductive so-
lutions to inductive questions does not undermine the justification of inductive
inferences. It is, rather, what justifies them. When deductive solutions are
available, they should be used. When they aren’t, the best one can do is to
fall back on inductive methods. Therefore, feasibility contextualism provides a
compelling response to inductive skepticism. To reject inductive inference when
it is required is to reject the best possible means for finding the truth out of
preference for standards that cannot be realized. One might insist that the best
possible means are not good enough, but that position is hardly inevitable. It
is at least as reasonable to respond that the best is good enough. Feasibility
contextualism is not a new idea — it is just business as usual in theoretical
computer science, where an algorithm is justified by showing that its efficiency
approaches the maximum feasible efficiency for the problem it is intended to
solve. As above, it is the negative results showing that the problem cannot be
solved in a better way that do the heavy normative lifting.

Taking verifiability of type V1 as the fundamental notion, the perspective sketched
above was worked out in its essentials by Kelly [1996] and further generalized
by de Brecht and Yamamoto [2009], Genin and Kelly [2015] and Baltag et al.
[2016]. But it is not difficult to prove that verifiable propositions of type V2 also
satisfy T1 and T2.15 Therefore, the structure of statistically verifiability is also
topological. The characteristic asymmetries are all present: while it is possible
to verify that the true bias of the coin lies in the interval (.5 − 1/n, .5 + 1/n)
for any n, it is not possible to verify that the coin is exactly fair. Nevertheless,
it is possible to verify that the coin is not fair. Figure 1.3 illustrates how we
can build an analogous statistical hierarchy of methodological success by taking
verifiability of type V2 (or V3) as the fundamental notion. One of the major
achievements of this work is a systematic lifting of the results of Kelly [1996] to
the statistical setting.

In Genin and Kelly [2017] we exhibit a topology on probability measures in which
the open sets are exactly the propositions verifiable (in the sense of V2) from

15It is somewhat more difficult to show the same for propositions of type V3. This is the
work of Section 3.3.
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random samples. In statistical terminology, our main result provides necessary
and sufficient conditions for the existence of a Chernoff consistent hypothesis
test. Although there is extensive statistical work on pointwise consistent hy-
pothesis testing, we are unaware of any analogous result. We also characterize
topologically the statistical questions for which there exists a pointwise consis-
tent method. We take these results to be novel contributions to mathematical
statistics, but the real benefit to statistical methodology is twofold. Firstly,
disciplining statistical practice with a complexity theory has the salutory effect
of decisively forestalling wishful thinking. Everyone would like methods with a
guaranteed bound on the chance of error for their favorite inference problem.
Methods that merely converge to the truth in the limit without guaranteed
bounds on the chance of error are sometimes scoffed at, although better ones
are not exhibited. A topological analysis identifies the best possible sense in
which a problem is solvable, and whether guaranteed bounds on error, or even
limiting convergence, is feasible. No one should expect solutions to genuinely in-
ductive problems with guaranteed error bounds. Secondly, frequentist statistics
as classically formulated by Fisher, Neyman and Pearson, and recently reartic-
ulated by Mayo and Cox [2006], licenses inferences only when the chance of
error can be bounded. That is essentially an expression of inductive skepticism,
since it is possible to bound the chance of error only for relatively simple prob-
lems. Complexity theory allows us to face the problem of induction squarely
and honestly, and articulate norms of success that are feasible for the difficult
problems scientists face. In light of the fundamental bridge results of Genin and
Kelly [2017], we can forge new norms of maximally monotonic convergence in
concrete inference problems that arise in statistics and machine learning. That
lays the foundation for a new normative program for frequentist statistics, in
which considerations of progressiveness play a central role.

1.4 Plan of the Work

The remainder of this dissertation is divided into two chapters. Chapter 2
presents an overview of learning from propositional information. This chapter
attempts to summarize quickly and painlessly the relevant results from previous
work in the propositional framework [Genin and Kelly, 2015, Kelly et al., 2016,
Genin and Kelly, 2018]. Since many issues are set into sharper relief when
abstracting from statistical complications, the reader who is interested in a
systematic development is invited to begin here. The reader familiar with the
basic outlines of the learning theoretic approach, as well as those that are in a
hurry, can safely skip to Chapter 3. Chapter 3 contains all of the substantive
original contributions made in this document. Advancing from the developments
in Genin and Kelly [2017], it develops a point-by-point statistical analogue of
the framework outlined in Chapter 2. For a thorough outline of what I take to
be its novel contribution, see the beginning of Chapter 3.
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Chapter 2

Learning from
Propositional Information

2.1 The Propositional Setting

To clarify the intended analogy with statistics, we briefly introduce the setting
of propositional information. The impatient reader can proceed to the next
section. More expansive developments of the results in this section appear in
de Brecht and Yamamoto [2009], Genin and Kelly [2015], and Baltag et al.
[2016].

Let W be a set of possible worlds, or epistemic possibilities one takes seriously,
consistent with the background assumptions of inquiry. A proposition is identi-
fied with the set of worlds in which it is true, so propositions are subsets of W .
Let P,Q be arbitrary propositions. P is true in w iff w ∈ P. Logical operations
correspond to set-theoretic operations in the usual way: P ∩ Q is conjunction,
P ∪ Q is disjunction, P c = W \ P is negation, and P ⊆ Q is deductive entail-
ment of Q by P . Finally, P is deductively valid iff P = W and is deductively
contradictory iff P = ∅.

In the setting of propositional information, information states are propositions
that rule out relevant possibilities. For every w in W , let I(w) be the set of all
information states true in w (i.e. which contain w as an element). It is assumed
that I(w) is non-empty — at worst, one receives the trivial information W. That
motivates the following axiom:

Axiom I.1 I(w) 6= ∅.

The information states in I(w) are interpreted not merely as information that
might, with luck, be afforded in w. Rather, they reflect what will be afforded,
eventually, to a diligent inquirer, in the sense that for each information state E ∈
I(w), there is a stage of inquiry after which the total information entails E. That

29
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assumption reflects the normative requirement that all scientific information can
be replicated with sufficient diligence. Let E,F be two information states in
I(w). If the total information in w eventually entails each of E and F , then it
must eventually entail them both. That motivates the following:

Axiom I.2 For each E,F in I(w), there exists G in I(w) such that G ⊆ E∩F .

Finally, we assume that I is countable, since any language in which the data
are recorded is at most countably infinite.

Axiom I.3 I is countable.

The following examples help to fix ideas.

Example 2.1.1. Let W be the set of all infinite binary sequences. Each world
w determines an infinite sequence of observable outcomes. Let w|n be the initial
segment of w of length n. Let [w|n] be the set of all worlds having w|n as an
initial segment. Let I(w) be the set of all [w|n] for every n. Think of the length
of the initial segment observed as the “stage” of inquiry. There is exactly one
such information state in w at every stage, and [w|n] is entailed by [w|m] for
every m ≥ n.

Example 2.1.2. Let W be the set of all real numbers. Think of the possible
“stage-n” information states in w as the open intervals of width 1/2n that con-
tain w. Then I(w) is the set of all intervals containing w of width 1/2n, for
some natural number n. It follows that for every E ∈ I(w) there is a stage n
such that every stage-n information state in I(w) entails E.

Define I = ∪wI(w). We call the structure (W, I) an information basis. The set

I(w|E) = {F ∈ I(w) : F ⊆ E}

is the set of information states that might be presented in w from E onwards.
It is straightforward to check that the restriction of I to E, I|E = ∪wI(w|E),
satisfies Axioms I.1-3 relative to the background space of possibilities E. There-
fore, (E, I|E) determines the information basis relative to E.

Information state E verifies proposition H iff E entails H. Information state E
refutes H iff it verifies Hc. Information state E decides H iff it either verifies or
refutes H. We now introducte some topological operators, and their epistemo-
logical interpretations. The interior of a proposition H, denoted int(H), is the
set of all worlds w, such that there is E ∈ I(w) verifying H. Hence, int(H) is
the set of worlds in which H is eventually verified by information. The exterior
of a proposition H, denoted ext(H), is the set of all worlds in which H will be
refuted, i.e. int(Hc). The closure of H, denoted cl(H), is the set of all worlds in
which H will never be refuted by information, defined by (extH)c. Of course,
H is never refuted if H is true. The worrisome possibility is if H is never re-
futed in w even though H is false. Then, a Popperian might say that H poses
the problem of metaphysics in w. The proposition that H poses the problem
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of metaphysics is called the frontier of H, defined by: frnt(H) = cl(H) ∩ Hc.
Again, following Popper, hypothesis H poses the problem of induction in w iff H
is true, but will never be verified. So the proposition that H poses the problem
of induction is just frnt(Hc). The proposition that H will never be decided is
called the boundary of H, defined by: bdryH = frntH ∪ frntHc. The fron-
tier of H and the frontier of Hc partition the boundary into the problem of
metaphysics and the problem of induction, respectively—the two fundamental
problems with which Popper begins The Logic of Scientific Discovery. The fol-
lowing key translates between the topological operators and the propositions to
which they correspond.

int(H) ≡ H will be verified;

ext(H) ≡ H will be refuted;

cl(H) ≡ H will not be refuted;

bdry(H) ≡ H will not be decided;

frnt(H) ≡ H is false and will not be refuted;

frnt(Hc) ≡ H is true and will not be verified.

Proposition H is open iff H ⊆ intH, i.e., if H entails that H will be verified.
Proposition H is closed iff clH ⊆ H, i.e. if Hc entails that Hc will be verified.
It is clear from the definition that H is closed iff Hc is open. Proposition H
is clopen iff H is both open and closed. The following summarizes the above
correspondences.

H is open ≡ H entails that H will be verified;

H is closed ≡ Hc entails that H will be refuted;

H is clopen ≡ H will be decided.

Proposition H is closed iff it does not pose the problem of metaphysics. Dually,
H is open iff it does not pose the problem of induction.

Lemma 2.1.1. H is closed iff frnt(H) = ∅.

Proof. H is closed iff cl(H) ⊆ H iff cl(H) ∩Hc = ∅ iff frnt(H) = ∅.

It is not difficult to show that if H is open, it is a countable union of information
states in I. Let T be the closure of I under arbitrary unions. The elements of
T are exactly the open sets. Readers familiar with topology will have already
noticed that Axioms I.1-3 guarantee that I is a topological basis, and therefore,
that (W, T ) is a topological space. We call T the information topology on W .
The open sets of T are governed by the following axioms:

Axiom T.1 Any (finite or infinite) union of elements of T belongs to T ;

Axiom T.2 The intersection of finitely many members of T belongs to T .
By the axioms it follows straightforwardly that the closed sets are closed under
(finite or infinite) intersections, and finite unions.
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2.2 Propositional Verification, Refutation and
Decision

A method L : I → P(W ) is a function from information states to propositions.
Method L is non-ampliative iff it never leaps beyond the information, i.e. if
E ⊆ L(E) for all E in I. Method L is infallible iff its output is always true, i.e.
iff w ∈ L(E), for all E ∈ I(w). Infallibility and non-ampliativity are equivalent.

Lemma 2.2.1. Method L is infallible iff L is non-ampliative.

Proof. Left to right. Suppose that L is not non-ampliative. Then there is E ∈ I,
such that w ∈ E \ L(E). So L(E) is false in w, although E ∈ I(w). Therefore,
L is not infallible. Right to left. Suppose that L is non-ampliative. Then, for
all E ∈ I(w), we have that w ∈ E ⊆ L(E). Therefore, L is infallible.

Say that method L is monotonic iff L(F ) ⊆ L(E) whenever F ⊆ E. Monotonic-
ity and infallibility are logically independent. To see that infallibility does not
imply monotonicity, notice that an infallible method with L(E) = E can always
retract to the trivial information state W on further information. To see that
monotonicity does not imply infallibility, notice that the method that always
outputs the incoherent proposition ∅ is monotonic.

A method converges to proposition A in w, iff there is E ∈ I(w) such that
L(F ) ⊆ A for all F ∈ I(w|E). Say that method L is a verification method for H
iff it is an infallible method that converges to H in the limit, if H is true. That
is, L is a verifier of H iff

Infal. L is infallible;

LimCon. L converges to H, if H is true.

Say that H is verifiable iff there exists a verifier for H. A method L is a
refutation method for H iff it is a verification method for Hc. Say that H is
refutable iff there exists a refutation method for H. A method L is a deci-
sion method for H iff it is a verification method for H and Hc. A propo-
sition is decidable iff there exists a decision procedure for H. A monotonic
strengthening of these concepts immediately suggests itself. Say that H is
monotonically verifiable/refutable/decidable iff there exists a monotonic veri-
fication/refutation/decision method for H.

For an illustration, suppose you are observing a computation by an unknown
program; it is verifiable that that the program will halt at some point, but it
is not verifiable that it will never halt. In the setting of Example 2.1.1, it is
verifiable that a 0 will be observed at some stage, but not that 0 will be observed
at every stage. In that setting, it is refutable that no 1s will ever be observed.
It is decidable whether a 0 appears at stage n.
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Theorem 2.2.1 provides a topological characterization of the verifiable hypothe-
ses.

Theorem 2.2.1. For H ⊆W, the following are equivalent:

1. H is verifiable;

2. H is monotonically verifiable;

3. H is open in the information topology.

Proof of Theorem 2.2.1. It is clear from the defintions that 2 implies 1. First,
we show that 1 entails 3. Suppose that H is not open. Then H is true in some
w, such that for all information E true in w, E does not entail H, i.e. there is
w ∈ H \ int(H). Suppose, for contradiction, that L verifies H. Then L(F ) ⊆ H,
for some F true in w. But, by assumption, there is v ∈ F ∩Hc. So L does not
avoid error in v, and fails to satisfy Infal. We show that 3 entails 1. Suppose
that H is open. Let L(E) = H if E entails H, and let L(E) = W otherwise. It is
clear that L is monotonic and non-ampliative, and therefore infallible. Suppose
that w ∈ H. Since w ∈ intH, there is an information state F true in w that
entails H. Therefore, L(F ) = H. Furthermore, for any information state G
true in w, we have that L(G ∩ F ) = H. So L satisfies LimCon.

By the theorem, and Axioms T.1 and T.2, it follows that verifiable propositions
are closed under finite conjunctions and arbitrary disjunctions. Theorem 2.2.1
implies that if H is not open, then there is in general no error-avoiding method
that arrives at true belief in H. Every method that converges to true belief in
worlds in which H is never verified must leap beyond the information available,
and expose itself to error thereby. The characterization of refutable propositions
follows immediately.

Theorem 2.2.2. For H ⊆W, the following are equivalent:

1. H is refutable;

2. H is monotonically refutable;

3. H is closed in the information topology.

Finally, the decidable propositions are exactly the clopen sets.

Theorem 2.2.3. For H ⊆W, the following are equivalent:

1. H is decidable;

2. H is monotonically decidable;

3. H is clopen in the information topology.
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Proof of Theorem 2.2.3. It is clear from the definitions that 2 implies 1. If H is
decidable, it is both verifiable and refutable. By Theorems 2.2.1, and 2.2.2, H
is both open and closed, and therefore, clopen. We have shown that 1 implies 3.
Finally, we show that 3 implies 1. Suppose that H is clopen in the information
topology. Let

L(E) =


H, if E ⊆ H;

Hc, if E ⊆ Hc;

W, otherwise.

It is clear that L is both monotonic and non-ampliative, and therefore infallible.
Suppose that w ∈ H. Since H is open, w ∈ intH. That implies that there is
E ∈ I(w) such that E ⊆ H. Therefore, L(E) ⊆ H and L(F ) ⊆ H for all
F ⊆ E, and L verifies H. Suppose that w ∈ Hc. Since Hc is also open, there
is E ∈ I(w) such that E ⊆ Hc. Therefore, L(E) ⊆ Hc and L(F ) ⊆ Hc for all
F ∈ I(w|E), which implies that L verifies Hc.

2.3 Limiting Verification, Refutation and Deci-
sion

The requirement of infallibility is too strict to allow for ampliative, inductive in-
ferences that draw conclusions beyond the information provided. But induction
is necessary for inquiry, since most scientific hypotheses are neither verifiable
nor refutable, but have a less familiar topological property of significant method-
ological importance. Consider the hypothesis H, which says:

Y = αX2 + βX.

Suppose that the truth is:
Y = βX.

Hypothesis H is not verifiable, because finitely many inexact observations along
a parabola are compatible with a cubic function with a very small cubic term.
Hypothesis H is not refutable, because the truth might be linear, in which case
inexact measurements would never rule out arbitrarily flat parabolas. But H
does have this important property: however H is true, one receives, eventually,
information ruling out all simpler laws, after which H would be refuted if H were
false. That is the characteristic epistemological property of concrete, scientific
hypotheses and models. In general, say that H is verifutable iff H entails that
frnt(H), the worlds in which H is false but will not be refuted, will be refuted,
i.e. if H ⊆ ext(frntH). In topology, verifutable propositions are said to be locally
closed.

Theorem 2.3.1. The following are all equivalent

1. H is verifutable;

2. frnt(H) is refutable;
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3. H ⊆ ext(frntH);

4. H = V ∩R, for verifiable V and refutable R.

Proof. The proof relies on several standard facts about the closure operator (1)
it is extensive, i.e. H ⊆ clH, (2) it is increasing, i.e. that if A ⊆ B, then
clA ⊆ clB, and (3) it is idempotent, i.e. that clclA = clA. It is an immediate
consequence of idempotence that clA is closed. It is an immediate consequence
of extensivity that if A is closed, then clA = A.

2 implies 3. Suppose the frnt(H) is refutable. By Theorem 2.2.2, frntH is
closed, and therefore cl(frntH) ⊆ frnt(H). Since the closure operator is ex-
tensive, cl(frntH) = frnt(H). For all propositions, H ⊆ (frntH)c. Substituting
equals for equals, H ⊆ (clfrntH)c = extfrntH.

3 implies 2. By definition, frntH ⊆ clH. Since the closure operator is increas-
ing and idempotent, clfrntH ⊆ clclH = clH. Suppose that (3) holds. Then,
clfrntH ⊆ Hc, and therefore clfrntH ⊆ Hc ∩ clH = frntH. So frntH is closed
and, by Theorem 2.2.2, refutable.

2 implies 4. For all propositions H = clH ∩ H = clH ∩ (frntH)c. Suppose
that (2) holds. Then, frntH is closed and therefore, frntH = clfrntH. So
H = clH ∩ (clfrntH)c. Furthermore, clH is closed, and (clfrntH)c is open. By
Theorems 2.2.1 and 2.2.2, we have exhibited H as the conjunction of a verifiable
and refutable proposition.

4 implies 2. Suppose that H = V ∩R for verifiable V and refutable R. Then,

frntH = cl(V ∩R) ∩ (V ∩R)c

= cl(V ∩R) ∩ V c ∪ cl(V ∩R) ∩Rc

Since the closure operator is increasing, cl(V ∩ R) ⊆ clR = R. Therefore, the
right-hand disjunct is empty, and frnt(H) = cl(V ∩ R) ∩ V c, a conjunction of
closed sets.

Scientific paradigms, or research programs, are typically not even verifutable—
they must be articulated with auxiliary assumptions of increasing complexity
to make them verifutable. That familiar idea motivates the concept of a limit-
ing open proposition, which is a countable union (disjunction) of locally closed
propositions that may be viewed as its possible, concrete articulations.

Limiting open propositions have an important methodological character. Say
that method L is a limiting decision procedure for H iff L converges to H in the
limit, if H is true, and converges to Hc in the limit, if Hc is true. That is, L is
a limiting decision procedure for H iff

LimDec L converges to H in w, if w ∈ H, and converges to Hc in w, if w /∈ H.
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Say that H is decidable in the limit iff there is a limiting decision procedure
for H. It is a basic result, proved independently by a number of authors in
philosophy and informatics (de Brecht and Yamamoto [2009], Genin and Kelly
[2015], and Baltag et al. [2016]), that H is decidable in the limit iff H and Hc are
both countable unions of locally closed sets—i.e., iff H and Hc are both research
programs. That implies that the catch-all hypothesis “neither H nor Hc” is off
the table, either by presupposition or by assumption, and explains why science
typically focuses on competitions between two salient research programs.

Theorem 2.3.2. H is decidable in the limit iff H and Hc are limiting open.

Proof of Theorem 2.3.2. Left to right. Suppose that H is decidable in the limit.
Then H and Hc are verifiable in the limit. By Theorem 2.3.3, both H and Hc

are limiting open.

Right to left. Suppose that H and Hc are limiting open. Then, H = ∪i=1A1,i

and Hc = ∪i=1A2,i, where each Aj,i is verifutable and A1,k ∩ A2,j = ∅ for all
j, k. Let f : N→ {1, 2} × N be a bijection. For E ∈ I, let

σ(E) = f ◦min{i : E ⊆ extfrnt(Af(i)) and E * ext(Af(i))}.

Define

L(E) =

{
Aσ(E), if σ(E) <∞;

W, otherwise.

We show that L satisfies LimDec. Suppose, without loss of generality, that
w ∈ H. Let k = min{i : w ∈ Af(i)}. For all j < k, w /∈ Af(j) and therefore,
either w ∈ frnt(Af(j)) or w ∈ ext(Af(j)). Let Y = {j < k : w ∈ frnt(Af(j))},
and X = {j < k : w ∈ ext(Af(j))}. Let

O′ = ∩j∈XextAf(j);

O′′ = extfrnt(Af(k)).

LetO = O′∩O′′. O′ is a finite conjunction of open sets, and therefore open. Since
Af(k) is verifutable, O′′ is open, by Theorem 2.3.1. Therefore O is open. By
construction, w ∈ O. Let E ∈ I(w) such that E ⊆ O. Suppose that F ∈ I(w|E).
We claim that Aσ(F ) = Af(k). For j ∈ X, F ⊆ E ⊆ ext(Af(j)). For j ∈ Y,
w ∈ frntAf(j) and therefore, F * extfrnt(Af(j)). Since F ∈ I(w), F * extAf(k).
Furthermore, F ⊆ E ⊆ extfrnt(Af(k)). Therefore L(F ) = L(E) = Af(k) ⊆ H, as
required.

If the catch-all hypothesis is taken seriously, one can still verify research
program H in the limit, in the sense that method L converges to an articulation
of H iff H is true. Otherwise, L may cycle forever through alternative articula-
tions of H. The converse is also true—verification in the limit is demonstrably
possible only for research programs. Concretely, say that L converges to an
articulation of H in w iff there E ∈ I(w) such that L(F ) ⊆ L(E) ⊆ H, for all
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F ∈ I(w|E). Say that L verifies H in the limit iff L converges to an articulation
of H in w iff w ∈ H. Say that H is verifiable in the limit iff there is a method
that verifies H in the limit.

Theorem 2.3.3. H is verifiable in the limit iff H is limiting open.

Proof of Theorem 2.3.3. Left to right. Suppose that L is a limiting verifier of
H. Let

S = {E ∈ I : L(E) ⊆ H}.

For each E ∈ S, let DE = {F ∈ I : F ⊆ E and L(F ) * L(E)}, and let
E′ =

⋃DE . We claim that:

H =
⋃
E∈T

E \ E′.

To prove the claim, w ∈ H iff there is E ∈ I(w) such that for all information
states F ∈ I(w|E), L(F ) ⊆ L(E) ⊆ H iff there is E ∈ S such that w ∈ E \ E′.
Since S ⊆ I, and I is countable, H is expressed as a countable union of locally
closed sets.

Right to left. Let H = ∪∞i=1Ai, for Ai verifutable. Let

σ(E) = min{i : E ⊆ extfrntAi and E * extAi}.

Define

L(E) =

{
Aσ(E), if σ(E) <∞;

W, otherwise.

Suppose that w ∈ H. Let k be the least integer such that w ∈ Ak. Then for
j < k, either w ∈ ext(Aj) or w ∈ frnt(Aj). Let Y = {j < k : w ∈ frnt(Aj)}, and
X = {j < k : w ∈ ext(Aj)}. Let

O′ = ∩j∈XextAj ;

O′′ = extfrnt(Ak).

Let O = O′ ∩ O′′. O′ is a finite conjunction of open sets, and therefore open.
Since Ak is verifutable, O′′ is open, by Theorem 2.3.1. Therefore O is open. By
construction, w ∈ O. Let E ∈ I(w) such that E ⊆ O. Suppose that F ∈ I(w|E).
We claim that Aσ(F ) = Ak. For j ∈ X, F ⊆ E ⊆ ext(Aj). For j ∈ Y, w ∈ frntAj
and therefore, F * extfrnt(Aj). Since F ∈ I(w), F * extAk. Furthermore,
F ⊆ E ⊆ extfrnt(Ak). Therefore L(F ) = L(E) = Ak ⊆ H, as required. Suppose
that w /∈ H, and that for E ∈ I(w), L(E) = Ai. Then w ∈ E ⊆ extfrntAi. Since
w /∈ Ai, and w /∈ frntAi, it must be that w ∈ extAi. Let F ∈ I(w|E) be such
that F ⊆ extAi. Then L(F ) ⊆ Ac

i , and therefore L(F ) * L(E), as required.
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2.4 Problems and Solutions

An empirical problem is a triple (W, I,Q) countable partition Q of the worlds
in W into a set of answers. For w ∈ W , write Q(w) for the answer true in w.
A relevant response is any disjunction of answers to Q. Let Q∗ be the set of all
relevant responses. For any proposition A, let Q(A) be the strongest relevant
response entailed by A, i.e. Q(A) =

⋂{R ∈ Q∗ : A ⊆ R}. A method is a
solution to Q iff it converges, on increasing information, to the true answer in
Q, i.e. iff for every w ∈ W , there exists E ∈ I(w) such that L(F ) ⊆ Q(w) for
all F ∈ I(w) entailing E. A problem is solvable iff it has a solution.

Theorem 2.4.1. Problem Q is solvable iff every answer is limiting open.

Proof. Left to right. Suppose that Q is solvable. Let L be a solution to Q.
Then, L is a limiting decision procedure for each A ∈ Q. By Theorem 2.3.2,
A is limiting open. Right to left. Let A1, A2, . . . enumerate the answers to Q.
Suppose that each Ai is limiting open. Then, by Theorem 2.3.2, each answer
is decidable in the limit. Let Li be a limiting decision prodecure for Ai. Let
σ(E) = min{i : Li(E) ⊆ Ai}. Define

L(E) =

{
Aσ(E), if σ(E) <∞;

W, otherwise.

Suppose that w ∈ Ai. Since, w /∈ Aj for each j < i, there is Ej ∈ I(w) such that
for all F ∈ I(w|Ej), Lj(F ) ⊆ Ac

j . Furthermore, since w ∈ Ai, there is Ei ∈ I(w)
such that for all F ∈ I(w|Ei), Li(F ) ⊆ Ai. Let O′ = ∩j<iEj . Let O′′ = Ei.
Let O = O′ ∩ O′′. By construction, O is open and w ∈ O. Let E ∈ I(w) such
that E ⊆ O. Let F ∈ I(w|E). Then, Li(F ) ⊆ Ai and, for j < i, Lj(F ) ⊆ Ac

j .
Therefore, L(F ) ⊆ Ai, as required.

Theorems like 2.2.1, 2.3.3, and 2.4.1 constitute an exact correspondence between
topology and learnability.

2.5 Simplicity and Ockham’s Razor

Popper [1959] proposed that A is as simple as B, which we abbreviate with
A � B, iff A is at least as falsifiable as B, i.e. if every information state that
refutes B also refutes A. In the equivalent, contrapositive formulation: A � B
iff any information state consistent with A is consistent with B. Therefore,
Popper’s thesis is that A � B iff A ⊆ clB, i.e. A entails that B will never be
refuted. That elegant notion captures many of our intuitions about simplicity.
Since any collection of points consistent with a linear polynomial is consistent
with a quadratic, linear is simpler than quadratic. In the ornithological con-
text, it means the sharp hypothesis ‘all ravens are black’ is simpler than its
negation. However, Popper’s proposal has the unintuitive consequence that the
result of “tacking-on” an irrelevant conjunct to A is simpler than A itself [Gly-
mour, 1980]. That is undesirable feature is a consequence of the elementary
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fact that if B entails A, then B entails clA as well. A particularly striking con-
sequence is that the unopinionated hypothesis W , expressing a suspension of
belief, is maximally complex. By demanding greater logical content, Popper’s
version of Ockham’s razor has the paradoxical effect of preventing you from
suspending judgment, even before you have seen any data.

In Genin and Kelly [2018], we amend Popper’s notion to answer that type of ob-
jection. According to Popper, A is simpler than B iff A entails that B will never
be refuted. But there is nothing wrong with a true theory never being refuted.
The worrisome possibilities are those in which B is false, but never refuted —
in such worlds, mistaken belief in B would never be detected. Those are exactly
the worlds in cl(B)\B, or frntB. That suggests the following explication of sim-
plicity: A � B iff A ⊆ frntB. That is better than Popper’s original formulation,
because it no longer confounds underdetermination by information with logical
strength. Since frntW = ∅, suspension of belief is always a simplest response.
We still get the intuitive verdict that linear is simpler than quadratic. But there
are tricky cases where it is still difficult to decide what to say. Ought we to
say that linear or cubic is also simpler than quadratic? The proposed simplicity
notion says that the disjunctive hypothesis is not simpler than quadratic, since
the cubic worlds are not in the frontier of the quadratic worlds. That means
that simplicity relations can be obscured by disjoining irrelevant possibilities,
e.g. if A � B, and w /∈ frntB, then A ∪ {w} � B. Those sorts of considerations
suggest the following defintion: say that A is as simple as B, written A / B
iff A ∩ frntr(B) 6= ∅, which says that A is compatible with the possibility that
B is false, but irrefutable. Say that A is simplest iff there is no B such that
B / A. This latest definition is also motivated by a suggestive correspondence
with refutability.

Theorem 2.5.1. A is simplest iff A is refutable.

Proof. By Lemma 2.1.1, A is closed iff frntA = ∅, iff there is no B / A.

The simplicity relation may change in light of new information. Say that A is
as simple as B in light of E, written A /E B, iff A ∩ E / B ∩ E. Say that A is
simplest in light of E iff there is no B such that B /E A.

Defining simplicity is preliminary to defining Ockham’s razor, and other method-
ological norms. In the context of question Q, let L̂(E) = Q(L(E)). Say that a

method L is Popperian iff L̂(E) is closed (refutable) in E, i.e. E ∩ clL̂(E) ⊆
E∩ L̂(E). Say that a method L is Ockham iff L̂(E) is simplest in light of E. Say
that a method L never errs on the side of complexity iff L never outputs any-
thing more complex than the truth, i.e. Q(w) �/E L̂(E), for all E ∈ I(w). The
first two concepts, are global, and refer to what is simplest, or refutable, when
the possibilities are restricted to current information. The last concept is local,
and refers to the unknown truth: “in each world, never conjecture any relevant
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response more complex than the truth.” Surprisingly, all three principles are
equivalent.

Theorem 2.5.2. The following are equivalent:

1. L is Popperian;

2. L is Ockham;

3. L never errs on the side of complexity.

Proof of Theorem 2.5.2. 1 and 2 are equivalent by Theorem 3.6.2. We show that
1 and 3 are equivalent. L errs on the side of comlpexity iff there is E ∈ I(w)
such that E ∩Q(w) /E ∩Q(L(E)) iff there is w ∈ E ∩ frntQ(L(E)) iff Q(L(E))
is not closed in E.

Thus, if any of the above hold, we say that L satisfies Ockham’s razor,
otherwise say that L is an Ockham violator.1 Say that L is an opinionated
Ockham violator iff L ever conjectures an answer more complex than the truth,
i.e. iff there is E ∈ I(w) such that Q(w) /E Q(v) ⊇ L(E). Clearly, every
opinionated Ockham violator is an Ockham violator, though the converse is not
true.

2.6 Simplicity and Progress

It is one thing to define simplicity, and another to provide an epistemic jus-
tification for preferring it. In this section, we provide what Lakatos laments
is missing from Popperian methodology: some reason to believe that prefer-
ring simplicity, or equivalently, falisifiability, is any better than some other ad
hoc stratagem. It seems like a minimal requirement of progressive inquiry that
truth not be forfeited once it is in our grasp. Say that a solution L to a problem
(W, I,Q) is progressive iff for E ∈ I(w), if L(E) ⊆ Q(w), then L(F ) ⊆ Q(w)
for F ∈ I(w|E). That is to say that the true answer to Q is a fixed point of in-
quiry in w: once L has conjectured the true answer, no further information can
dislodge it from the truth. The following provides a simple sufficient condition
for progressive solvability.

Theorem 2.6.1. Suppose that there is an enumeration A1, A2, . . . , of the an-
swers to Q, in agreement with the simplicity relation, i.e. that if i < j then
Aj �/ Ai. Then there is a progressive solution for (W, I,Q).

Proof of Theorem 2.6.1. Suppose that the preconditions of the theorem hold.
First we argue that, for all i, ∪j≤iAj is refutable. Suppose that ∪j≤iAj is not
refutable. Then, by Lemma 2.1.1 there is w ∈ frnt ∪j≤i Aj . Then, it must be

1That maximal simplicity corresponds to refutability is a very Popperian result, but Popper
failed to obtain it. Recall that on Popper’s proposal, W is (trivially) refutable, but maximally
complex.
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that w ∈ Ak for k > i. But then, there is j < k such that Ak/Aj . Contradiction.
Therefore, each ∪j≤iAj is refutable. Let σ(E) = min{i : E * ∩j≤iAc

j}. Define

L(E) =

{
Aσ(E), if σ(E) <∞;

W, otherwise.

Suppose that w ∈ Ai. First, we show that L is a solution. Let w ∈ Ai. Then w
is in the open set O = ∩j<iAc

j . Let E ∈ I(w), such that E ⊆ O. Suppose that
F ∈ I(w|E). Then, for j < i, F ⊆ E ⊆ ∩k≤jAc

k. Since F ∈ I(w), F * ∩j≤iAc
j .

Therefore, L(F ) ⊆ Ai, as required. It remains to show that L is progressive.
Suppose that E ∈ I(w) and L(E) ⊆ Q(w). Let F ∈ I(w|E). Then, F ⊆
E ⊆ ∩j<iAc

j and, since F ∈ I(w), F * ∩j≤iAc
j . Therefore, L(F ) = Ai, as

required.

So long as it is possible to enumerate the answers to a question in agreement
with the simplicity relation, it is possible to solve it in a progressive way. In the
propositional setting this result is not terribly exciting, nor difficult to prove.2

Proving an analogous result in the statistical setting (Theorem 3.6.3) is not as
easy, but of commensurately greater interest.

In Genin and Kelly [2018], we justify Ockham’s razor by showing that it is a
necessary condition of avoiding unnecessary cycles of opinion on the way to
the truth. Here, I give a justification of a somewhat weaker principle, proving
that every progressive solution must not be an opinionated violator of Ockham’s
razor. That means that the rather minimal requirement of progressiveness man-
dates a rather strong methodological preference for simple answers. This result
speaks to intuition, and inspires an analogous result in the statistical setting
(Theorem 3.6.4).

Theorem 2.6.2. Suppose that L is a solution for (W, I,Q). L is progressive
only if L is not an opinionated Ockham violator.

Proof of Theorem 2.6.2. Suppose that L is a solution for (W, I,Q). Suppose
that L is an opinionated Ockham violator. By Theorem 2.5.2, there is w and
E ∈ I(w), such that Q(w)/EQ(v) ⊇ L(E). Therefore, there is w′ ∈ E∩Q(w)∩
frntQ(v). Since L is a solution, there is F ∈ I(w′|E) such that L(F ) ⊆ Q(w′) =
Q(w). Since w′ ∈ frntQ(v), there is w′′ ∈ F ∩ Q(v). Therefore, E,F ∈ I(w′′),
F ⊆ E, but L(E) ⊆ Q(w′′) and L(F ) * Q(w′′). Therefore, the true answer is
not a fixed point of inquiry in w′′.

2For more results about when, exactly, progressive solutions are feasible, see Genin and
Kelly [2018]
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Chapter 3

Learning from Statistical
Information

There seems to be a gulf between propositional and statistical information.
Propositional information rules out relevant possibilities. In contrast, a typical
random sample is logically compatible with every possible generating distribu-
tion. That well-worn observation has convinced many to abandon theories of
scientific method in which refutation occupies a central role. If scientific data
typically fail to refute any relevant possibility, then the theory developed in
Chapter 2, which relies on decisive refutation, has no real subject matter. In
this chapter, we address that fundamental difficulty by solving for the unique
topology in which the open sets are precisely the statistically verifiable propo-
sitions, and the closed sets are precisely the statistically refutable propositions.
That allows for a systematic translation out of the idiom of falsificationist phi-
losophy of science and into the language of the data-driven sciences.

In Section 3.1, we set the stage on which statistical inquiry occurs. The un-
structured point-worlds of Chapter 2 are replaced with probability measures on
a sample space. The task of inquiry is to infer from random samples something
about the probability measure governing their statistical behavior. In Section
3.1, we introduce the weak topology, a common topology on probability mea-
sures, and prove some simple results about it. Most of the theorems in this
section can be found in Billingsley [1999]. The point of the section is firstly, to
quickly and painlessly develop some necessary tools, and secondly, to introduce
an epistemic interpretation of the weak topology. Roughly speaking: a sequence
of measures µn converges to µ in the weak topology iff a statistical test would
have difficulty refuting the (µn) on the basis of data from µ.

In Section 3.2, we introduce several candidates for the definition of statistical
verifiability. In the setting of Part I, an hypothesis H is said to be verifiable
iff there exists a monotonic and infallible method that converges on increasing

43
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information to H iff H is true. That condition implies that there is a method
that achieves every bound on chance of error, and converges to H iff H is true.
In statistical settings, one typically cannot insist on such a high standard of
infallibility. Instead, say that H is statistically verifiable iff for every bound
on error, there is a method that achieves it, and that converges on increasing
samples to H iff H is true. The reversal of quantifiers expresses the fundamen-
tal difference between statistical and propositional verifiability. Of course, this
rough definition leaves many things unspecified. Section 3.2 considers several
different ways of rendering it precise.

Theorem 3.2.1 shows that no matter which plausible definition one prefers, a hy-
pothesis is statistically verifiable if, and only if, it is open in the weak topology.
In statistical terminology, our Theorem 3.2.1 provides a topological criterion for
the existence of a consistent hypothesis test, with genuine finite-sample bounds
on the chance of Type I error. To the best of my knowledge, there is no prece-
dent for this in the statistical literature.

In Section 3.2.3, we illustrate the power and utility of the framework by ap-
plying it to conditional independence testing. We show that under a weak,
non-parametric condition, hypotheses of conditional dependence between ran-
dom variables are statistically verifiable. That proves the existence of a gen-
eral, consistent, non-parametric test of conditional independence with finite-
sample bounds on the chance of Type I error. That improves on previous non-
parametric results given by Gretton and Györfi [2010], Györfi and Walk [2012]
which, while guaranteeing the existence of tests that are consistent in the limit
of infinite data, do not guarantee finite-sample bounds on the chance of error.
In Section 3.2.4 we apply these results on conditional independence testing to
learning causal Bayes nets from observational data.

In the preceding, we said that statistical verifier of H converges to H if H is true,
and otherwise has a small chance of drawing an erroneous conclusion. But that
standard is consistent with a wild see-sawing between the chance of producing
the informative conclusion H and the uninformative conclusiosn W as sample
sizes increase, even if H is true. Of course, it is desirable that the chance of cor-
rectly producing H increases with the sample size. If that is not feasible, then
we can at least expect that there are no two sample sizes n1 < n2 such that the
chance of correctly producing H is much smaller at n2 than at n1. That prop-
erty ensures that collecting a larger sample is never a disastrously bad idea.
Surprisingly, standard hypothesis tests fail to satisfy even that weak require-
ment. Chernick and Liu [2002] noticed non-monotonic behavior in the power
function of textbook tests of the binomial proportion, and proposed heuristic
software solutions. The test exhibited in the proof of Theorem 3.2.1 also dis-
plays occasionally dramatic non-monotonicity. For that reason, Theorem 3.2.1
provides only a partial statistical analogue of propositional verifiability, since
issues of monotonicity are ignored.
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In Section 3.3 we pay closer attention to monotonicity. Theorem 3.3.1 states
that every hypothesis which is open in the weak topology is also monotonically
verifiable, in the following sense: for every α > 0, there is a statistical veri-
fier of H such that (1) the chance of erroneously concluding H is bounded by
α and (2) as sample sizes increase, the probability of correctly producing the
informative concluison H never decreases by more than α. The import of the
Theorem is that, with care, non-monotonicities can be rendered abitrarily small.
Section 3.3.3 applies the results of the previous section to prove the existence
of monotonic methods for verifying conditional dependencies and related causal
hypotheses. That feature turns out to be crucial in Section 3.6.2.

In Section 3.4.1, we leave behind deductive standards of statistical success. In
other words: we begin to consider success concepts that do not require finite-
sample bounds on the chance of error. The central theorems of Section 3.4.1
give topological characterizations of hypotheses that are statistically verifiable,
refutable and decidable in the limit. The last of these results gives a generaliza-
tion of the topological criterion of decidability in the limit given by Dembo and
Peres [1994].1 As an illustration of these concepts, we give a simple proof that,
in the framework of graphical causal models that, under the causal Markov and
faithfulness assumption, it is always possible to decide in the limit whether the
true causal structure belongs to a particular Markov equivalence class.

In Section 3.5, we continue with a study of inductive statistical problems. A sta-
tistical problem is a partition of the set of probability measures compatible with
background knowledge into an exhaustive set of competing answers. A method
is a solution to a statistical problem if, on increasing samples, it converges to
the true answer to the statistical problem. Theorem 3.5.1 gives a topological
characterization of solvable statistical problems. This defines the outer limits of
problems that are tractable by statistical means. As an illustration, we prove
that, under the usual assumptions, it is always possible to converge in the limit
to the Markov equivalence class of the true causal graph. Spirtes et al. [2000],
give similar results, exhibiting several algorithms that solve this problem pro-
vided that one “plugs in” reliable procedures for making the requisite decisions
about conditional independence. Spirtes et al. [2000] cite appropriate tests for
the linear Gaussian case, and the discrete case. One may still wonder, how-
ever, whether appropriate procedures exist in general. In Section 3.5.2, we give
general results that hold for discrete variables, random variables with density
functions, and any mixture of the two.

A method may count as a solution to a statistical problem even if its chance of
producing the true conclusion at sample size 100 decreases dramatically from the
chance at sample size 20. Of course one would prefer if, no matter which answer
is the true one, the chance of getting the right answer increases monotonically
with sample size. Even if that standard is infeasible, it should be our regulative

1Dembo and Peres refer to this decidability in the limit as discernability.
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ideal. Say that a method is α-progressive if, no matter which answer is the true
one, the chance that the method outputs the true answer never decreases by
more than α as the sample size grows. That property ensures that collecting
more data cannot set the method back too badly. Theorem 3.6.3 demonstrates
that, for typical problems, there exists an α-progressive method for every α > 0.
In Section 3.6.5 we show that there exist progressive solutions to the problem of
inferring Markov equivalence classes of causal graphs. That provides a stronger
justification for standard methods of causal discovery from observational data
than previous arguments, which only demonstrated their pointwise consistency.

Finally, Theorem 3.6.4 shows that every α-progressive method must obey a
probabilistic version of Ockham’s razor. That provides a non-circular, prior-
free justification for simplicity bias in statistical methodology. If progressiveness
strikes the reader as a weak property, then we have given a strong justification of
Ockham’s razor, since it is necessary for achieving even this very weak standard
of success.

3.1 The Statistical Setting

3.1.1 Samples and Worlds

A sample space S = (Ω, I) is a set of possible random samples Ω equipped with
a topological basis I. The topology T is formed by closing the basis I under
unions. The topology on the sample space reflects what is verifiable about the
sample itself. As in the purely propositional setting, it is verifiable that sample
ω lands in A iff A is open, and it is decidable whether sample ω falls into region
A iff A is clopen. No one can tell whether a real-valued sample point is rational
or irrational, or if it is exactly π, because these regions are not open in the
usual topology on R. For another example, suppose that region A is the closed
interval [1/2,∞], and that the sample ω happens to land right on the end-point
1/2 of A. Suppose, furthermore, that given enough time and computational
power, the sample ω can be specified to arbitrary, finite precision. No finite
degree of precision: ω ≈ .50; ω ≈ .500; ω ≈ .5000; . . . suffices to determine that
ω is truly in A. But the mere possibility of a sample hitting the boundary of A
does not matter statistically, if the chance of obtaining such a sample is zero, as
it typically is, unless there is discrete probability mass on the geometrical point
1
2 .

The worlds in W are probability measures on the measurable space (Ω,B), where
B is the smallest σ-algebra generated by T . The elements of B are called Borel
sets. Call the triple (W,Ω, I), consisting of a set of probability measures W, and
sample space (Ω, I), a chance setup.2

2The term is borrowed from Ian Hacking [1965], although my usage is not exactly the same.
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A Borel set A for which µ(bdryA) = 0 is said to be almost surely clopen (de-
cidable) in µ.3 Say that a collection of Borel sets S is almost surely clopen in
µ iff every element of S is almost surely clopen in µ. We say that a Borel set
A is almost surely decidable iff it is almost surely decidable in every µ in W .
Similarly, we say that a collection of Borel sets S is almost surely clopen iff
every element of S is almost surely clopen.

In the following, we will often assume that the basis I is almost surely clopen.
That assumption is satisfied, for example, in the standard case in which the
worlds in W are Borel measures on Rn, and all measures are absolutely contin-
uous with respect to Lebesgue measure, i.e. when all measures have probability
density functions, which includes normal, chi-square, exponential, Poisson, and
beta distributions. It is also satisfied for discrete distributions like the binomial,
for which the topology on the sample space is the discrete (power set) topology,
so every region in the sample space is clopen. It is satisfied in the particular
cases of Examples 3.1.1 and 3.1.2.

Example 3.1.1. Consider the outcome of a single coin flip. The set Ω of
possible outcomes is {H,T}. Since every outcome is decidable, the appropriate
topology on the sample space is T = {∅, {H}, {T}, {H,T}}, the discrete topology
on Ω. Let W be the set of all probability measures assigning a bias to the coin.
Since every element of T is clopen, every element is also almost surely clopen.

Example 3.1.2. Consider the outcome of a continuous measurement. Then the
sample space Ω is the set of real numbers. Let the basis I of the sample space
topology be the usual interval basis on the reals. That captures the intuition that
it is verifiable that the sample landed in some open interval, but it is not veri-
fiable that it landed exactly on the boundary of an open interval. There are no
nontrivial decidable (clopen) propositions in that topology. However, in typical
statistical applications, W contains only probability measures µ that assign zero
probability to the boundary of an arbitrary open interval. Therefore, every open
interval E is almost surely decidable, i.e. µ(bdry(E)) = 0.

The following Lemma, given in Parthasarathy [1967] states that the almost
surely clopen sets are closed under finitary set-theoretic operations.

Lemma 3.1.1 (Lemma 6.4 [Parthasarathy, 1967]). The almost surely clopen
sets in µ, denoted C(µ), form an algebra.

Proof of Lemma 3.1.1. One has that Ω ∈ C(µ), since bdry(Ω) = ∅. Moreover,
C(µ) is closed under complement, since bdry(A) = bdry(Ac). Furthermore, since
bdry(A∪B) ⊆ bdry(A)∪bdry(B), it follows that if A,B ∈ C(µ), then µ(bdry(A∪
B)) ≤ µ(bdry(A) ∪ bdry(B)) ≤ µ(bdry(A)) + µ(bdry(B)) = 0. Therefore, C(µ)
is closed under finite union as well.

3A set that is almost surely clopen in µ is sometimes called a continuity set of µ.
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As an immediate consequence, we have the following:

Corollary 3.1.1. If S is almost surely clopen in µ, then A(S), the smallest
algebra generated by S, is almost surely clopen in µ.

Proof of Corollary 3.1.1. Recall that for arbitrary index set I, if every element
of the collection (Ai, i ∈ I) is an algebra, then ∩i∈IAi is an algebra. Since A(S)
is the intersection of all algebras containing S, and C(µ) is an algebra containing
S, A(S) ⊆ C(µ).

Product spaces represent the outcomes of repeated sampling. Let I be an index
set, possibly infinite. Let (Ωi, Ti)i∈I be sample spaces, each with basis Ii. Define
the product (Ω, T ) of the (Ωi, Ti) as follows: let Ω be the Cartesian product of
the Ωi; let T be the product topology, i.e. the topology in which the open sets
are unions of Cartesian products ×iOi, where each Oi is an element of Ti, and
all but finitely many Oi are equal to Ωi. When I is finite, the products of basis
elements in Ii are the intended basis for T . Let B be the σ-algebra generated
by T . Let µi be a probability measure on Bi, the Borel σ-algebra generated by
the Ti. The product measure µ = ×iµi is the unique measure on B such that, for
each B ∈ B expressible as a Cartesian product of Bi ∈ Bi, where all but finitely
many of the Bi are equal to Ωi, µ(B) =

∏
µi(Bi). (For a simple proof of the

existence of the infinite product measure, see Saeki [1996].) Let µ|I| denote the
|I|-fold product of µ with itself.

The following Lemma shows that almost sure decidability is preserved by prod-
ucts.

Lemma 3.1.2. Suppose that A′, A′′ are almost surely decidable in µ′, µ′′ respec-
tively. Then A′ ×A′′ is almost surely decidable in µ = µ′ × µ′′.
Proof of Lemma 3.1.2. Note that bdry(A′×A′′) ⊂ (bdryA′×Ω′′)∪(Ω′×bdryA′′).
Therefore,

µ(bdry(A′ ×A′′)) ≤ µ(bdryA′ × Ω′′) + µ(Ω′ × bdryA′′)

= µ′(bdryA′) · µ′′(Ω′′) + µ′(Ω′) · µ′′(bdryA′′)
= 0.

3.1.2 Statistical Tests

A statistical method is a measurable function from random samples to proposi-
tions over W .4 A test of a statistical hypothesis H ⊆W is a statistical method
ψ : Ω → {W,Hc}. Call ψ−1(W ) the acceptance region, and ψ−1(Hc) the re-
jection region of the test.5 The power of test ψ(·) is the worst-case probability

4The σ-algebra on the range of the method is assumed to be the power set.
5The acceptance region is ψ−1(W ), rather than ψ−1(H), because failing to rejectH licenses

only the trivial inference W .
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that it rejects truly, i.e. infµ∈Hc µ[ψ−1(Hc)]. The significance level of a test is
the worst-case probability that it rejects falsely, i.e. supµ∈H µ[ψ−1(Hc)].

A test is feasible in µ iff its acceptance region is almost surely decidable in µ.
Say that a test is feasible iff it is feasible in every world in W . More generally,
say that a method is feasible iff the preimage of every element of its range is
almost surely decidable in every world in W . Tests that are not feasible in µ
are impossible to implement — as described above, if the acceptance region is
not almost surely clopen in µ, then with non-zero probability, the sample lands
on the boundary of the acceptance region, where one cannot decide whether to
accept or reject. If one were to draw a conclusion at some finite stage, that con-
clusion might be reversed in light of further computation. Tests are supposed
to solve inductive problems, not to generate new ones.6 Therefore we consider
only feasible methods in the following development.

Hypothesis tests are often constructed to reject if the number of samples landing
in a particular region exceeds some threshold. The following lemma states that
such a test is µ-feasible, if the region is almost surely clopen in µ.

Lemma 3.1.3. Suppose that A is almost surely clopen in µ. Then:{
(ω1, . . . , ωn) :

n∑
i=1

1[ωi ∈ A] ≥ k
}

is almost surely clopen in µn, for n ≥ 1, and k ≥ 0.7

Proof of Lemma 3.1.3. Let L1, L2, . . . , LnCdke enumerate all dke-element sub-
sets of {1, 2, . . . , n}. Then

{(ω1, . . . , ωn) :

n∑
i=1

1[ωi ∈ A] ≥ k} =

nCdke⋃
i=1

×nj=1Bij ,

where Bij = A if j ∈ Li, and Bij = Ω otherwise. By Lemma 3.1.1, the
almost surely clopen sets in µn are closed under finite disjunctions. Therefore it
suffices to show that ×nj=1Bij is an almost surely clopen set in µn, which follows
immediately from Lemma 3.1.2.

3.1.3 The Weak Topology

A sequence of measures (µn)n converges weakly to µ, written µn ⇒ µ, iff
µn(A) → µ(A), for every A almost surely clopen in µ. It is immediate that

6Considerations of feasibility provide a new perspective on the assumption that appears
throughout this work: that the basis I is almost surely clopen. If that assumption fails, then
it is not an a priori matter whether geometrically simple zones are suitable acceptance zones
for statistical methods. But if that is not determined a priori, then presumably it must be
investigated by statistical means. That suggests a methodological regress in which we must
use statistical methods to decide which statistical methods are feasible to use.

7The indicator function 1[ω ∈ A] is defined to take the value 1, if ω ∈ A, and 0, otherwise.
In the following we will write 1A(·) for that indicator function.
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µn ⇒ µ iff for every µ-feasible test ψ(·), µn(ψ rejects) → µ(ψ rejects). It fol-
lows that no feasible test of H = {µ} achieves power strictly greater than its
significance level. Furthermore, every feasible method that correctly infers H
with high chance in µ, exposes itself to a high chance of error in “nearby” µn.
It is a standard fact that one can topologize W in such a way that weak con-
vergence is exactly convergence in the topology: the usual sub-basis is given by
sets of the form {ν : |µ(A)− ν(A)| < ε}, where A is almost surely clopen in µ.8

That topology is called the weak topology, n.b.: the weak topology is a topol-
ogy on probability measures, whereas all previously mentioned topologies were
topologies on random samples. The following theorem provides useful sufficient
conditions for weak convergence. It is essentially Theorem 2.1 in Billingsley
[1999], omitting conditions irrelevant to the current development.

Theorem 3.1.1. (Billingsley [1999, Theorem 2.1]) 1 and 2 are equivalent. 2
implies 3.

1. lim supn µn(F ) ≤ µ(F ) for all closed F ;

2. lim infn µn(G) ≥ µ(G) for all open G;

3. µn ⇒ µ.

Proof of Theorem 3.1.1. The fact that 1 and 2 are equivalent is immediate by
duality. To see that 1 and 2 imply 3, note that:

µ(clA) ≥ lim sup
n

µn(clA) ≥ lim sup
n

µn(A)

≥ lim inf
n

µn(A) ≥ lim inf
n

µn(intA) ≥ µ(intA).

If A is almost surely clopen, then µ(intA) = µ(A) = µ(clA) and lim infn µn(A) =
lim supn µn(A) = limn µn(A) = µ(A).

As a consequence of Theorem 3.1.1, Billingsley proves the following, which
provides a way to demonstrate weak convergence by showing that µn(A)→ µ(A)
holds for a convenient class of events.

Theorem 3.1.2. (Billingsley [1999, Theorem 2.2]) Suppose (1) that S is closed
under finite conjunction and (2) that every open set is a countable union of S
sets. If µn(A)→ µ(A) for every A in S, then µn ⇒ µ.

Proof of theorem 3.1.2. Following Billingsley: if A1, . . . , Ar are in S, then so

8Recall that a sequence (µn) converges to µ in a topology iff for every open set E containing
µ, there is n0 such that µn ∈ E for all n ≥ n0. If a topology is first countable, (µn) converges
to µ in the topology iff µ is in the topological closure of the µn.
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are their intersections. Therefore, by the inclusion-exclusion principle:

µn(∪ri=1Ai) =

=
∑
i

µn(Ai)−
∑
i<j

µn(Ai ∩Aj) +
∑
i<j<k

µn(Ai ∩Aj ∩Ak)− · · ·

→
∑
i

µ(Ai)−
∑
i<j

µ(Ai ∩Aj) +
∑
i<j<k

µ(Ai ∩Aj ∩Ak)− · · ·

= µ(∪ri=1Ai).

If G is open, then G = ∪iAi for some sequence {Ai} ⊆ S. Let ε > 0. Since µ is
countable additive, there is r such that µ(∪i≤rAi) > µ(G)− ε. By the above,

µ(G)− ε ≤ µ(∪i≤rAi) = lim
n
µn(∪ri=1Ai) = lim inf

n
µn(∪ri=1Ai) ≤ lim inf

n
µn(G).

Since ε was arbitrary, µ(G) ≤ lim infn µn(G). So by Theorem 3.1.1, µn ⇒ µ.

The preceding theorem allows us to exhibit a very tractable sub-basis for the
weak topology. That sub-basis for the weak topology has two fundamental ad-
vantages over the standard sub-basis. First, its closure under finite intersection
is evidently a countable basis. Second, it is easy to show that all the elements of
the sub-basis are statistically verifiable, which we demonstrate in Lemma 3.2.1.

Theorem 3.1.3. Suppose (1) that I is a countable base (2) that W is a set
of Borel measures on (Ω, I), and (3) that I is almost surely decidable in every
µ ∈W. Let A be the algebra generated by I. Then, the collection

{{µ : µ(A) > r} : r ∈ Q and A ∈ A}

is a sub-basis for the weak topology on W .

Proof of Theorem 3.1.3. It is sufficient to show that µn ⇒ µ iff the µn converge
to µ in the topology generated by the sub-basis. Left to right. Suppose µn ⇒ µ.
Let E be open in the topology generated by the sub-basis. Suppose µ lies in E.
Then there is a basic open set:

B =

k⋂
i=1

{µ : µ(Ai) > bi},

such that µ ∈ B ⊆ E. Since I is feasible for W , µn(Bi) → µ(Bi) for each i.
Therefore, there exists ni such that µn ∈ {µ : µ(Ai) > bi} for all n ≥ ni. Letting
m = max{n1, . . . , nk}, it follows that µn ∈ B ⊆ E for all n ≥ m. Therefore,
the µn converge to µ in the topology generated by the sub-basis. Right to left.
Suppose that the µn converge to µ in the topology generated by the sub-basis.
Notice that {µ : µ(A) ∈ (a, b)} = {µ : µ(A) > a}∩{µ : µ(Ac) > 1−b}. Therefore,
since A is an algebra, the collection {µ : µ(A) ∈ (a, b)} for A ∈ A, and a, b ∈ Q
generates the same topology. Let A1, A2, . . . enumerate the elements of A(I).
Let lij < µ(Ai) < rij be rationals lying in (µ(Ai) − 1/j, µ(Ai) + 1/j). Let
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Zij denote the sub-basis element {ν : ν(Ai) ∈ (lij , rij)}. Let f be a surjective
function from N to N × N. Let Uk = Zf(k). By assumption, for every m ≥ 1,
there is n0 such that the µn lie in ∩mk=1Uk, for all n ≥ n0. So µn(A) → µ(A),
for every A ∈ A. Since A is closed under conjunction, and every open set in
T is a countable union of elements of A, it follows from Theorem 3.1.2 that
µn ⇒ µ.

The following observations are easy consequences of the Lemma. In the set-
ting of Example 3.1.1, the set of all {µ : µ({H}) ∈ (a, b)} for a, b ∈ Q, assigning
open intervals of biases for the coin, forms a sub-basis for the weak topology on
W . In fact, it forms a basis. If µ is the world in which the bias of the coin is
exactly .5 and µn is the world in which the bias is exactly .5 + 1/2n, then the
µn converge to µ in the weak topology.

The preceding results enable us to characterize how convergence in the weak
topology interacts with product spaces.

Theorem 3.1.4. Suppose (1) that I ′, I ′′ are countable bases, (2) that µ′n, µ
′

and µ′′n, µ
′′ are Borel measures on (Ω′, I ′), (Ω′′, I ′′) respectively, and (3) that

I ′, I ′′ are almost surely decidable in µ′, µ′′ respectively. Then µ′n×µ′′n ⇒ µ′×µ′′
iff µ′n ⇒ µ′ and µ′′n ⇒ µ′′.

Proof. Right to left. Suppose that µ′n ⇒ µ′ and that µ′′n ⇒ µ′′. Let A′,A′′ be
the smallest algebras generated by I ′, I ′′. By Corollary 3.1.1, A′,A′′ are almost
surely decidable in µ′, µ′′. Consider the class of sets

A′ ×A′′ = {A′ ×A′′ : A′ ∈ A′, A′′ ∈ A′′}.

Since (A1 × B1) ∩ (A2 × B2) = (A1 ∩ A2) × (B1 ∩ B2), A′ × A′′ is closed
under finite intersection. Furthermore, since I ′ × I ′′ is a countable basis for
T ′ × T ′′, and A′ × A′′ ⊇ I ′ × I ′′, every open set in T ′ × T ′′ is a countable
union of A′ × A′′ sets. Therefore, by Theorem 3.1.2 it suffices to show that
µ′n × µ′′n(A) → µ′ × µ′′(A) for every A ∈ A′ × A′′. Let A = A′ × A′′ be in
A′ ×A′′. Then µ′n × µ′′n(A) = µ′n(A′) · µ′′n(A′′)→ µ′(A′) · µ′′(A′′) = µ′ × µ′′(A).
Left to right. Suppose that µ′n×µ′′n ⇒ µ′×µ′′. By Lemma 3.1.2, every element
of A′ × A′′ is almost surely decidable in µ′ × µ′′. Therefore, for every A′ ∈ A,
µ′n(A′) = µ′n(A′) · µ′′n(Ω′′) = µ′n × µ′′n(A′ × Ω′′) → µ′ × µ′′(A′ × Ω) = µ′(A′).
Similarly, for every A′′ ∈ A′′, µ′′n ⇒ µ′′. By Theorem 3.1.2, µ′n ⇒ µ′ and
µ′′n ⇒ µ′′.

3.1.4 Convergence in Distribution

In this section, we paraphrase the theory of weak convergence in terms of con-
vergence in distribution. When stated in these terms, the theory may look more
familiar to those accustomed to working with random variables.
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A probability space is a sample space (Ω, I) endowed with a measure µ de-
fined on B, the Borel σ-algebra generated by I. Let X be a function from a
probability space (Ω,B, µ) to a metric space (S,S). We say that X is a ran-
dom variable if it is measurable B/S. If S is R, we say that X is a random
scalar. If S is Rk, we say that X is a random vector. If S is Rm×n, then we
say that X is a random matrix. The distribution of X is the probability mea-
sure Pµ on (S,S) defined by Pµ(A) = µ(X−1A). The distribution of X is also
called the law of X and denoted L(X). When X is a random vector, there
is also the associated distribution function of X = (X1, . . . , Xk), defined by
F (x1, . . . , xk) = Pµ[y ∈ Rk : yi ≤ xi, i ≤ k].

We say that a sequence {Xn} of random variables converges in distribution to
the random variable X iff L(Xn)⇒ L(X). Then write Xn ⇒ X. The definition
makes sense only if the range and the topology on it (S,S) are the same for
all X,X1, X2 . . .. The domains may be distinct, and their structure is largely
irrelevant, since they enter into the definition only by way of the distribution on
(S,S) that they induce. If (S,S) is Rk with the usual topology, then Xn ⇒ X iff
Fn(x1, . . . , xk)→ F (x1, . . . , xk) for all (x1, . . . , xk) such that {y : yi ≤ xi, i ≤ k}
is almost surely clopen in L(X).9 That connects weak convergence with the
more familiar definition of convergence in distribution.

We also introduce the notion of convergence in probability. Let X,X1, X2, . . .
be a sequence of random vectors defined on the same space. Let ||Xn −X|| be
the Euclidean distance between the random variables, i.e.

||Xn −X|| =
√

[Xn,1(ω)−X1(ω)]2 + · · ·+ [Xn,k(ω)−Xk(ω)]2.

We say that the Xn converge to X iff

lim
n→∞

P (||Xn −X|| > ε) = 0,

for all ε > 0. Note that, for each n, ||Xn−X|| is a real-valued random variable,
so the relevant distributions are the L(||Xn −X||). Convergence in probability

is indicated by writing Xn
P→ X. The definition is generalized to matrices by

reading ||Xn −X|| as the Euclidean distance between matrices.

We also state, without proof, Slutsky’s well-known theorem. It will be invoked
in Sections 3.6.1 and 3.6.1.

Theorem 3.1.5 (Slutsky’s Theorem). Let {Xn}, {Yn} be sequences of random

scalars/vectors/matrices. If Xn ⇒ X and Yn
P→ c, where c is a constant, then

• Xn + Yn ⇒ X + c;

• YnXn ⇒ cX,

provided that multiplication and addition are defined.
9For a proof of this fact, see Example 2.3 in Billingsley [1999].
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3.2 Statistical Verification, Refutation and De-
cision

3.2.1 Defining the Success Concepts

In the setting of propositional information, hypothesis H was said to be veri-
fiable iff there is an infallible method that converges on increasing information
to H iff H is true. That condition implies that there is a method that achieves
every bound on chance of error, and converges to H iff H is true.10 In statistical
settings, one cannot insist on such a high standard of infallibility. Instead, say
that H is verifiable in chance iff for every bound on error, there is a method that
achieves it, and that converges in probability to H iff H is true. The reversal of
quantifiers expresses the fundamental difference between statistical and proposi-
tional verifiability and, hence, between statistical and propositional information.

Say that a family (λn)n∈N of feasible tests of Hc is an α-verifier in chance of
H ⊆W iff for all n ∈ N:

BndErr. µn[λ−1
n (H)] ≤ α, if µ ∈ Hc;

LimCon. µn[λ−1
n (H)]

n−→ 1, if µ ∈ H.

Say that H is α-verifiable in chance iff there is an α-verifier in chance of H. Say
that H is verifiable in chance iff H is α-verifiable in chance for every α > 0.

Several strengthenings of verifiability in chance immediately suggest themselves.
One could demand that, in addition to BndErr, the chance of error vanishes
to zero:

VanErr. µn[λ−1
n (H)]

n−→ 0, if µ ∈ Hc.

If we wanted to be even more demanding, we could strengthen BndErr to the
requirement that the total chance of error is bounded:

σ-BndErr.
∑∞
n=1 µ

n[λ−1
n (H)] ≤ α, if µ ∈ Hc.

That implies both BndErr and VanErr, but also, by the Borel-Cantelli lemma,
that with probability one, a verifier makes only finitely many errors on an infinite
sample path, whenever H is false:

SVanErr. µ∞[lim inf λ−1
n (W )] = 1, if µ ∈ Hc.

We might demand similar asymptotic behavior when H is true. Say that a
family (λn)n∈N of feasible tests of Hc ⊆W is an almost sure α-verifier of H iff

σ-BndErr.
∑∞
n=1 µ

n[λ−1
n (H)] ≤ α, if µ ∈ Hc, and

10If for every ε > 0 the chance of error is less than ε, then the chance of error is zero: the
method is almost surely infallible.
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SLimCon. µ∞
[
lim inf λ−1

n (H)
]

= 1, if µ ∈ H.

Say that H is almost surely α-verifiable iff there is an almost sure α-verifer of
H. Say that H is almost surely verifiable iff H is almost surely α-verifiable, for
every α > 0.

Since almost sure convergence entails convergence in chance, almost surely ver-
ifiability entails verifiability in chance.11 At this point, the reader may won-
der why we introduce so many alternative definitions of statistical verification.
There are two principal reasons. Firstly, α-verification in chance seems like
the weakest success notion worthy of the name. Considering this weak success
concept strengthens the necessity side of Theorem 3.2.1. Secondly, almost sure
verification in chance, although it is logically stronger, is not thereby a “better”
version of statistical verification. Almost sure verification is a reasonable goal
for a single inquirer, or a single laboratory, that will collect a larger and larger
sample. The in-chance notions are more natural for the situation in which dif-
ferent laboratories coordinate their methods in order to replicate an effect from
larger and larger independent samples. From the perspective of an individual
inquirer, almost sure verifiability is the natural notion. From the perspective of
a science planner interested in patterns of independent replication, the in-chance
notion is the natural one.

Defining statistical refutability requires no new ideas. Say that H is α-refutable
in chance iff there is an α-verifier in chance of Hc. Say that H is refutable in
chance iff Hc is α-verifiable in chance for every α > 0. Say that H is almost
surely α-refutable iff there is an almost sure α-verifer of Hc. Say that H is
almost surely refutable iff Hc is almost surely α-verifiable, for every α > 0.

Verification and refutation are asymmetrical concepts. If H is false, a verifier of
H must bound its chance of error, but is excused from drawing any non-trivial
conclusions. The two-sided notion of statistical decision removes that epistemic
asymmetry. Say that a statistical method is a two-sided test of H ⊆W iff it is a
function λ : Ω→ {W,H,Hc}. Let Hµ = H if µ ∈ H and Hµ = Hc if µ /∈ H. Say
that a family (λn)n∈N of feasible, two-sided tests of H is an α-decision procedure
in chance for H ⊆W iff

BndErr. µn[λ−1
n (Hc

µ)] ≤ α;

LimCon. µn[λ−1
n (Hµ)]

n−→ 1.

Say that H is α-decidable in chance iff there is an α-decision procedure in chance
for H. Say that H is decidable in chance iff H is α-decidable in chance for every
α > 0.

Similarly, say that a family (λn)n∈N of feasible, two-sided tests of H is an almost
sure α-decision procedure for H ⊆W iff

11This entailment holds only for countably additive measures, to which we restrict attention.
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σ-BndErr.
∑∞
n=1 µ

n[λ−1
n (Hc

µ)] ≤ α;

SLimCon. µ∞
[
lim inf λ−1

n (Hµ)
]

= 1.

Say that H is almost surely α-decidable iff there is an almost sure α-decision
procedure for H. Say that H is almost surely decidable iff H is almost surely
α-decidable for every α > 0.

3.2.2 Characterization Theorems

The central theorem of this work states that, for sample spaces with countable,
almost surely clopen bases, verifiability in chance and almost sure verifiabil-
ity are both equivalent to being open in the weak topology. As promised in
the introduction, that fundamental result lifts the topological perspective to
inferential statistics.

Theorem 3.2.1 (Fundamental Characterization Theorem). Suppose (1) that
I is a countable base, (2) that W is a set of Borel measures on (Ω, I), and (3)
that I is almost surely clopen in every µ ∈ W. Then, for H ⊆ W, the following
are equivalent:

1. H is α-verifiable in chance for some α > 0;

2. H is almost surely verifiable;

3. H is open in the weak topology on W .

The characterization of statistical refutability follows immediately.

Theorem 3.2.2. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for H ⊆W, the following are equivalent:

1. H is α-refutable in chance for some α > 0;

2. H is almost surely refutable;

3. H is closed in the weak topology on W .

Finally, we give a characterization of statistical decidability.

Theorem 3.2.3. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for H ⊆W, the following are equivalent:

1. H is α-decidable in chance for some α > 0;

2. H is almost surely decidable;

3. H is clopen in the weak topology on W .



3.2. STATISTICAL VERIFICATION, REFUTATION AND DECISION 57

In light of Theorems 3.2.1, 3.2.2 and 3.2.3 we will say that a hypothesis is
simply statistically verifiable/refutable/decidable when the precise sense of veri-
fiability/refutability/decidability is not relevant.

Since a topological space is determined uniquely by its open sets, Theorem 3.2.1
implies that the weak topology is the unique topology that characterizes sta-
tistical verifiability under the weak conditions stated in the antecedent of the
theorem. Thus, under those conditions, the weak topology is not merely a con-
venient formal tool—it is the topology of statistical information.

For an elementary application of Theorem 3.2.1, consider, in the setting of
Example 3.1.1, the sharp hypothesis, F := {µ0}, that the bias of the coin is
exactly .5. By Theorem 3.1.3, the collection {{µ : µ(A) > r} : A ∈ {H,T}}
is a sub-basis for the weak topology on W . Therefore, the hypotheses of head-
bias, BH := {µ : µ(H) > .5}, and tail-bias, BT := {µ : µ(T ) > .5}, are open
in the weak topology. It follows that the hypothesis that the coin is biased,
B := BH∪BT , is open, and therefore, statistically verifiable, and the hypothesis
that it is fair, F = Bc, is closed, and therefore statistically refutable. However,
since the collection (µn), defined by µn(H) = .5 + ε/n, converges weakly to µ0,
the hypothesis that the coin is fair is not open, and therefore, not statistically
verifiable.

The proof of Theorem 3.2.1 proceeds in three steps. It is immediate from the
definitions (and the assumption of countable additivity) that 2 implies 1. Given
what we have developed so far, it is easy to show that 1 implies 3. The idea is
simple, but fundamental. If a hypothesis H is not open, then it must contain
a boundary point µ0. Then, there must be a sequence (µn) contained in Hc

converging weakly to µ0 and, therefore, the probability of falsely inferring H
in the µn is converging to the probability of correctly inferring H in µ0. That
is the fundamental expression of the statistical problem of induction. We use
that feature to derive a contradiction from the assumption of the existence of a
statistical verifier — any such ‘verifier’ would have to violate BndErr.

Proof of Theorem 3.2.1. 1 implies 3. Suppose, for contradiction, that H is not
open, but that (λn)n∈N is an α-verifier in chance for H. Let µ ∈ H ∩ bdryH.
Then there is a sequence of µn in Hc such that µn ⇒ µ. Since (λn)n∈N is
a verifier for H, there is a sample size k such that µk(λ−1

k (H)) > α + ε. By
Theorem 3.1.4, µkn ⇒ µk, and therefore µkn(λ−1

k (H)) → µk(λ−1
k (H)). So there

is a µm ∈ Hc such that µkm(λ−1
k (H)) > α. Contradiction.

To show that 3 implies 2, we first prove that for almost surely decidable A,
the hypothesis {µ : µ(A) > r} is almost surely verifiable. That entails that
every element of the subbasis for the weak topology exhibited in Theorem 3.1.3
is almost surely verifiable. Finally, we show that almost sure verifiability is
preserved by finite conjunctions and countable disjunctions, which completes
the proof. The proof of Theorem 3.2.3 is provided at the end of the section.
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Lemma 3.2.1. Suppose that B is almost surely decidable for every µ ∈ W .
Then, for all b ∈ R, the hypothesis H = {µ : µ(B) > b} is almost surely
verifiable.

Proof of Lemma 3.2.1. Define the indicator random variable 1B : Ω → {0, 1}
by 1B(ω) = 1 if ω ∈ B, otherwise 1B = 0. By Hoeffding’s inequality,

µn

[{
(ω1, . . . , ωn) :

n∑
i=1

1B(ωi) ≥ n (µ(B) + tn)

}]
≤ exp(−2nt2n).

Letting tn =
√

1
2n ln(π2n2/6α), it follows from Hoeffding’s inequality that:

µn

[{
(ω1, . . . , ωn) :

n∑
i=1

1B(ωi) ≥ n (µ(B) + tn)

}]
≤ 6α

π2n2
.

We argue that tn
n→ 0. Rewriting, we have that tn =

√
ln(πn)
n − ln(

√
6α)
n . Clearly,

ln(
√

6α)

n → 0. By L’Hopital’s rule, it follows that ln(πn)
n → 0. Therefore, by limit

algebra, t2n → 0. Next, we notice that ln(πn)
n > ln(

√
6α)
n , and therefore that

t2n ≥ 0. Finally, we appeal to the standard fact that, if an ≥ 0 and an → t, then√
an →

√
t.

Let

λn(ω1, . . . , ωn) =

{
H, if

∑n
i=1 1B(ωi) ≥ n(b+ tn)

W, otherwise.

By Lemma 3.1.3, λn is a feasible method. First, we show that (λn) satisfies
σ-BndErr. Suppose that µ /∈ H. Then, b ≥ µ(B) and:

∞∑
n=1

µn
[
λ−1
n (H)

]
=

∞∑
n=1

µn

[{
(ω1, . . . , ωn) :

n∑
i=1

1B(ωi) ≥ n(b+ tn)

}]

≤
∞∑
n=1

µn

[{
(ω1, . . . , ωn) :

n∑
i=1

1B(ωi) ≥ n(µ(B) + tn)

}]

≤
∞∑
n=1

6α

π2n2
= α,

where the final equality follows from the fact that
∑∞
n=1

1
n2 = π2/6.

It remains to show that (λn) satisfies SLimCon. Suppose that µ ∈ H. Then,

µ(B) > b. Then, since 1
n

∑n
i=1 1B(ωi)

a.s.→ E[1B ] = µ(B), by the strong law of

large numbers, and tn → 0, we have that 1
n

∑n
i=1 1B(ωi) − tn a.s.→ µ(B) > b.

Therefore, µ∞
[
lim inf
n→∞

λ−1
n (H)

]
= 1, as required.
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Lemma 3.2.2. The almost surely verifiable propositions are closed under finite
conjunctions, and countable disjunctions.

Proof of Lemma 3.2.2. Suppose that A1, A2 are a.s. verifiable. Let α > 0. Let
{λin}n∈N be an a.s. α-verifier for Ai. Let λn(~ω) = A1 ∩ A2 if λin(~ω) = Ai, for
i ∈ {1, 2}. By Lemma 3.1.1, λn is feasible, for each µ ∈ W, n ∈ N. Suppose
that µ ∈ A1 ∩A2. Then:

µ∞
[
lim inf
n→∞

λ−1
n (A1 ∩A2)

]
=

= µ∞
[
lim inf
n→∞

(λ1
n)−1(A1) ∩ (λ2

n)−1(A2)
]

= 1− µ∞
[
lim sup
n→∞

(λ1
n)−1(W ) ∪ (λ2

n)−1(W )

]
= 1− µ∞

[
lim sup
n→∞

(λ1
n)−1(W ) ∪ lim sup

n→∞
(λ2
n)−1(W )

]
≥ 1− µ∞

[
lim sup
n→∞

(λ1
n)−1(W )

]
− µ∞

[
lim sup
n→∞

(λ2
n)−1(W )

]
= −1 + µ∞

[
lim inf
n→∞

(λ1
n)−1(A1)

]
+ µ∞

[
lim inf
n→∞

(λ2
n)−1(A2)

]
= 1.

Suppose that µ /∈ A1 ∩A2. Without loss of generality, suppose µ /∈ A1. Then:

∞∑
n=1

µ∞
[
λ−1
n (A1 ∩A2)

]
=

=

∞∑
n=1

µ∞
[
(λ1
n)−1(A1) ∩ (λ2

n)−1(A2)
]

≤
∞∑
n=1

µ∞
[
(λ1
n)−1(A1)

]
≤ α.

To show that the a.s. verifiable propositions are closed under countable union,
suppose that A1, A2, . . . are a.s. verifiable. For i ∈ N, let {λin}n∈N be an a.s.
αi-verifier for Ai with αi = α/2i. Let λn(~ω) =

⋃∞
i=1Ai if λin(~ω) = Ai for some

i ∈ {1, . . . , n}, and let λn(~ω) = W otherwise. By Lemma 3.1.1, λn is feasible
for each µ ∈W,n ∈ N. Suppose that µ ∈ ⋃∞i=1Ai. Then there exists j ∈ N such
that µ ∈ Aj . Furthermore:

µ∞
[
lim inf
n→∞

λ−1
n (∪∞i=1Ai)

]
= µ∞

[
lim inf
n→∞

∪k≤n(λkn)−1(Ak)
]

≥ µ∞
[
lim inf
n→∞

(λjn)−1(Aj)
]

= 1.

Suppose that µ /∈ ∪∞i=1Ai. Then:
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∞∑
n=1

µ∞
[
λ−1
n (∪∞i=1Ai)

]
=

∞∑
n=1

µ∞
[
∪nk=1(λkn)−1(Ak)

]
≤
∞∑
n=1

µ∞
[
∪∞k=1(λkn)−1(Ak)

]
≤
∞∑
k=1

∞∑
n=1

µ∞
[
(λkn)−1(Ak)

]
≤
∞∑
k=1

α/2k = α.

Proof of Theorem 3.2.3. It is immediate from the definitions that 2 implies 1.
To see that 1 implies 3, suppose that (λn) is an α-decision procedure in chance
for H. For H ⊆W , define the set function χH : P(W )→ {H,W} as:

χH(A) =

{
H, if A ⊆ H,
W, otherwise.

Then, (χH◦λn) is a family of (one-sided) tests of Hc. We claim that (χH◦λn)
is an α-verifier in chance of H. Clearly, µn[χH ◦ λ−1

n (H)] = µn[λ−1
n (H)]. First,

we verify that (χH ◦ λn) satisfies BndErr. Suppose that µ ∈ Hc. Then,
µn[χH ◦ λ−1

n (H)] = µn[λ−1
n (H)] ≤ α, as required. To see that (χH ◦ λn)

satisfies LimCon, suppose that µ ∈ H. Then, limn→∞ µn[χH ◦ λ−1
n (H)] =

limn→∞ µn[λ−1
n (H)] = 1, as required. Therefore, H is α-verifiable in chance

and, by Theorem 3.2.1, open in the weak topology. An identical argument es-
tablishes that (χHc ◦λn) is an α-verifier in chance of Hc, which is therefore open
in the weak topology.

It remains to show that 3 implies 2. Suppose that H is clopen in the weak
topology. Let (λHn ) be an almost sure α-verifier of H, and let (λH

c

n ) be an
almost sure α-verifier of Hc. Let

λn(~ω) =


Hc, if λHn (~ω) = W and λH

c

n (~ω) = Hc,

H, if λHn (~ω) = H and λH
c

n (~ω) = W,

W, otherwise.

First we show that (λn) satisfies σ-BndErr:
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∞∑
i=1

µn[λ−1
n (Hc

µ)] =

∞∑
i=1

µn
[
(λHµn )−1(W ) ∩ (λ

Hc
µ

n )−1(Hc
µ)
]

≤
∞∑
i=1

µn
[
(λ
Hc
µ

n )−1(Hc
µ)
]
≤ α.

It remains to show that (λn) satistifes SLimCon:

µ∞[lim inf
n→∞

λ−1
n (Hµ)] = µ∞[lim inf

n→∞
(λHµn )−1(Hµ) ∩ (λ

Hc
µ

n )−1(W )]

= 1− µ∞[lim sup
n→∞

(λHµn )−1(W ) ∪ (λ
Hc
µ

n )−1(Hc
µ)]

= 1− µ∞[lim sup
n→∞

(λHµn )−1(W ) ∪ lim sup
n→∞

(λ
Hc
µ

n )−1(Hc
µ)]

≥ 1− µ∞[lim sup
n→∞

(λHµn )−1(W )]− µ∞[lim sup
n→∞

(λ
Hc
µ

n )−1(Hc
µ)]

= 1.

3.2.3 Application: Conditional Independence Testing

The concepts of marginal and conditional independence are central to statis-
tics, machine learning and neighboring fields [Dawid, 1979, Zhang et al., 2011].
Conditional independence plays an especially crucial role in causal discovery
and Bayesian network learning [Spirtes et al., 2000, Pearl, 2000]. In this sec-
tion we consider the verifiability of hypotheses about conditional dependence
of random variables. The central result of this section is Theorem 3.2.7, which
shows that, under a weak condition, conditional dependencies are statistically
verifiable. That result is crucial for learning causal hypotheses in the framework
of causal Bayes nets. First, we develop some basic results.

Theorem 3.2.4. For almost surely clopen events A,B,C and r ∈ [0, 1], the
following hypotheses are statistically verifiable:

1. {µ : µ(A) > r};

2. {µ : µ(A) < r};

3. {µ : µ(A)µ(B) > r};

4. {µ : 0 < µ(A)µ(B) < r};

5. {µ : µ(A ∩B) 6= µ(A)µ(B)};

6. {µ : µ(C) > 0, µ(A)
µ(C) > r};

7. {µ : µ(C) > 0, µ(A)
µ(C) < r};

8. {µ : µ(C) > 0, µ(A)µ(B)
µ(C) > r};

9. {µ : µ(C) > 0, 0 < µAµB
µC < r};
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10. {µ : µ(C) > 0, µ(A∩B∩C)
µ(C) 6= µ(A∩C)µ(B∩C)

µ(C) }.

Proof of Theorem 3.2.4.

1. By Lemma 3.2.1.

2. Follows from (1) and the fact that

{µ : µ(A) < r} = {µ : 1− µ(A) > 1− r} = {µ : µ(Ac) > 1− r}.

Since Ac is almost surely clopen iff A is almost surely clopen, we are done by
part (1).

3. We argue that:

{µ : µ(A)µ(B) > r} =
⋃

s∈(0,1]∩Q

({µ : µ(A) > r/s} ∩ {µ : µ(B) > s}) .

Suppose that ν is contained in the right-hand side. Then, there is s ∈ (0, 1]∩
Q such that ν(A)s > r and ν(B) > s. It follows that ν(A)ν(B) > ν(A)s > r.
Suppose that ν is contained in the left-hand side. Since ν(A)ν(B) > r ≥ 0,
0 ≤ r

ν(A) < ν(B) ≤ 1. Since the rationals are dense in the reals, there

is s′ ∈ ( r
ν(A) , ν(B)) ∩ (0, 1] ∩ Q. Furthermore, ν(A)s′ > ν(A) r

ν(A) = r, and

ν(B) > s′. By (1), we have expressed {µ : µ(A)µ(B) > r} as a countable union
of finite intersections of statistically verifiable hypotheses. By Lemma 3.2.2,
the statistically verifiable hypotheses are closed under finite conjunctions and
countable disjunctions, therefore {µ : µ(A)µ(B) > r} is statistically verifiable.

4. We argue that:

{µ : 0 < µ(A)µ(B) < r} =
⋃

s∈(0,1]∩Q

({µ : 0 < µ(A) < r/s} ∩ {µ : 0 < µ(B) < s})

∪ {µ : 0 < µ(A) < r, µ(B) > 0}

Suppose that ν is an element of the rhs. Then, ν(B) > 0 and either 0 < ν(A) <
r, or there is s ∈ (0, 1] ∩ Q such that 0 < ν(A)s < r and 0 < ν(B) < s. In
the first case, 0 < ν(A)ν(B) ≤ ν(A) < r, and therefore ν is an element of the
lhs. In the second case, 0 < ν(A)ν(B) < ν(A)s < r. We have shown that the
rhs is included in the lhs. Suppose that ν is an element of the lhs. Then either
ν(B) = 1 or ν(B) ∈ (0, 1). In the first case, µ(B) > 0 and 0 < µ(A) < r, and
therefore ν is an element of the rhs. In the second case, ν(B) ∈ (0, 1). Then,
0 < ν(A)ν(B) < r, and r

ν(A) > ν(B). Since the rationals are dense in the reals,

there is s′ ∈ (ν(B), r
ν(A) )∩Q∩ (0, 1]. Furthermore, 0 < ν(A)s′ < ν(A) r

ν(A) = r,
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and 0 < ν(B) < s′. By parts (1) and (2), each disjunct is a finite intersec-
tion of statistically verifiable hypotheses. Since the disjunction is countable,
{µ : 0 < µ(A)µ(B) < r} is statistically verifiable by Lemma 3.2.2.

5. Follows from (10), taking Ω for C.

6. Follows from (8), taking Ω for C.

7. In the case where r = 0,

{µ : µ(C) > 0,
µ(A)

µ(C)
< 0} = ∅,

which is trivially verifiable. Suppose that r ∈ (0, 1]. We argue that:

{µ : µ(C) > 0,
µ(A)

µ(C)
< r} =

⋃
s∈(0,1]∩Q

{µ : µ(A) < rs} ∩ {µ : µ(C) > s}.

Suppose that ν is an element of the rhs. Then, there is s ∈ (0, 1] such that

0 < s < ν(C), and therefore 0 < 1
ν(C) <

1
s . It follows that ν(A)

ν(C) <
ν(A)
s < r. We

have shown that the rhs is contained in the lhs. Suppose that ν is an element of

the lhs. Then, 0 ≤ ν(A)
r < ν(C) ≤ 1. Since the rationals are dense in the reals,

there is s′ ∈ (ν(A)
r , ν(C)) ∩ (0, 1] ∩ Q. Clearly, ν(C) > s′. Furthermore, since

ν(A)
r < s′, it follows that ν(A) < rs′. We have shown that the lhs is contained

in the rhs. By (1) and (2), we have expressed the hypothesis as a countable
union of finite intersections of statistically verifiable hypotheses. Therefore, it
is statistically verifiable by Lemma 3.2.2.

8. In the case where r = 0,

{µ : µ(C) > 0 and
µ(A)µ(B)

µ(C)
> 0} =

= {µ : µ(C) > 0} ∩ {µ : µ(A) > 0} ∩ {µ : µ(B) > 0}.

By part (1), this is a finite conjunction of statistically verifiable hypotheses.
By Lemma 3.2.2, it is statistically verifiable.

Suppose that r ∈ (0, 1]. We argue that
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{µ : µ(C) > 0 and
µ(A)µ(B)

µ(C)
> r} =

=
⋃

s∈(0,1]∩Q

({µ : µ(A)µ(B) > rs} ∩ {µ : 0 < µ(C) < s})∪

∪ {µ : µ(C) > 0 and µ(A)µ(B) > r}.
Suppose that ν is an element of the rhs. Then, either ν(C) > 0 and ν(A)ν(B) >
r, or there is s ∈ (0, 1] ∩ Q such that rs < ν(A)ν(B) and 0 < ν(C) < s. In the

first case, ν(A)ν(B)
ν(C) ≥ ν(A)ν(B) > r, and therefore ν is an element of the lhs. In

the second case, 0 < 1
s <

1
ν(C) , and r < ν(A)ν(B)

s < ν(A)ν(B)
ν(C) . We have shown

that the rhs is contained in the lhs.

Suppose that ν is an element of the lhs. Then, either ν(C) = 1 or ν(C) ∈ (0, 1).
In the first case, ν ∈ {µ : µ(C) > 0 and µ(A)µ(B) > r}, so ν is an ele-

ment of the rhs. Suppose that ν(C) ∈ (0, 1). Then, µ(A)µ(B)
r > µ(C) > 0.

Since µ(C) ∈ (0, 1), and the rationals are dense in the reals, there is s′ ∈
(µ(C), µ(A)µ(B)

r ) ∩ Q ∩ (0, 1]. Furthermore, µ(A)µ(B) > rµ(C) > rs′ and
0 < µ(C) < s′. We have shown the lhs is contained in the rhs. By (1), (2)
and (3), we have expressed the hypothesis as a countable union of finite in-
tersections of statistically verifiable hypotheses. Therefore, it is statistically
verifiable by Lemma 3.2.2.

9. We argue that

{µ : µ(C) > 0 and 0 <
µ(A)µ(B)

µ(C)
< r}

=
⋃

s∈(0,1]∩Q

({µ : 0 < µ(A)µ(B) < rs} ∩ {µ : µ(C) > s}) .

Suppose that ν is an element of the rhs. Then, there is s ∈ (0, 1] such that
0 < ν(A)ν(B) < rs and 0 < s < ν(C). That entails that 0 < 1

ν(C) < 1
s ,

and that 0 < ν(A)ν(B)
ν(C) < ν(A)ν(B)

s < r. We have shown the the rhs is con-

tained in the lhs. Suppose that ν is an element of the lhs. Then, r > 0 and

0 < ν(A)ν(B)
r < ν(C) ≤ 1. Since the rationals are dense in the reals, there

is s′ ∈ (ν(A)ν(B)
r , ν(C)) ∩ (0, 1] ∩ Q. Clearly, ν(C) > s′ and furthermore,

ν(A)ν(B)
r < s′, which implies that 0 < ν(A)ν(B) < rs′. We have shown the

lhs is contained in the rhs. By (1) and (4), we have expressed the hypothesis
as a countable union of finite intersections of statistically verifiable hypotheses.
Therefore, it is statistically verifiable.
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10. We argue that

{µ : µ(C) > 0,
µ(A ∩B ∩ C)

µ(C)
6= µ(A ∩ C)µ(B ∩ C)

µ(C)
} =

=
⋃

r∈(0,1)∩Q

(
{µ : µ(C) > 0,

µ(ABC)

µ(C)
< r} ∩ {µ : µ(C) > 0,

µ(AC)µ(BC)

µ(C)
> r}

)
∪

(
{µ : µ(C) > 0,

µ(ABC)

µ(C)
> r} ∩ {µ : µ(C) > 0, 0 <

µ(AC)µ(BC)

µ(C)
< r }

)
.

It is clear that the rhs is contained in the lhs. Suppose that ν is an element
of the lhs. Then, it must be that ν(AC), ν(BC) > 0, ν(C) > 0. Furthermore,

either ν(ABC)
ν(C) > ν(AC)ν(BC)

ν(C) or ν(ABC)
ν(C) < ν(AC)ν(BC)

ν(C) . In the first case, since,

0 < ν(AC)ν(BC)
ν(C) < ν(ABC)

ν(C) ≤ 1, and the rationals are dense in the reals, there is

r ∈ (ν(AC)ν(BC)
ν(C) , ν(ABC)

ν(C) ) ∩ (0, 1) ∩ Q. Therefore ν is an element of the rhs. In

the second case, 0 < ν(ABC)
ν(C) < ν(AC)ν(BC)

ν(C) ≤ 1. Since the rationals are dense

in the reals, there is r ∈ (ν(ABC)
ν(C) , ν(AC)ν(BC)

ν(C) )∩ (0, 1)∩Q. By (1), and (6-9) we

have expressed the hypothesis as a union of finite intersections of statistically
verifiable hypotheses. Therefore, it is statistically verifiable.

Let (Ω,F , µ) be a probability space, and let A,B be two subsets of F . We
say that A,B are µ-independent if, whenever A ∈ A and B ∈ B, µ(A ∩ B) =
µ(A)µ(B). Say that a collection of subsets of F , (Ai, i ∈ I), for arbitrary index
set I, are mutually µ-independent iff for any finite J ⊆ I and any Ai ∈ Ai,
µ(∩i∈JAi) =

∏
i∈J µ(Ai).

The σ-algebra, σ(X), generated by a random variable X taking values in some
measurable space (S,S), is defined as the collection

{X−1(U) : U ∈ S}.12

Two random variables X,Y defined over Ω are said to be µ-independent iff
the σ-algebras they generate, σ(X), σ(Y ) are µ-independent, i.e. if, whenever
A ∈ σ(X) and B ∈ σ(Y ), µ(A∩B) = µ(A)µ(B). We say that a collection of ran-
dom variables Xi : (Ω,F , µ)→ (Si,Si), i ∈ I for some index set I, are mutually
µ-independent if for any finite J ⊆ I, the collection of σ-algebras (σ(Xi), i ∈ J)
are mutually µ-independent.

It is a well known consequence of the π−λ theorem that µ-independence of ran-
dom variables X,Y is equivalent to independence of any π-systems, π(X), π(Y ),

12The fact that this is a σ-algebra is a consequence of the general fact that f−1(σ(C)) =
σ(f−1(C)).
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generating σ(X), σ(Y ). As a warm-up, we prove this reduction. Recall that a
λ-system is a collection L of subsets of Ω such that:

1. Ω ∈ L,

2. if A ∈ L, then Ac ∈ L,

3. if (Ai)i∈N is a sequence of disjoint subsets in L then, ∪∞i=1Ai is in L.

Theorem 3.2.5 (π − λ Theorem). Let L be a λ-system, and let P ⊆ L be a
π-system contained in L. Then the σ-algebra generated by P is contained in L.

Proof. For a proof see Theorem 3.2 in Billingsley [1986], or any other book on
measure theory.

Lemma 3.2.3. If Gi ⊆ F , i ∈ I is a mutually µ-independent collection of π-
systems, then σ(Gi), i ∈ I, is a mutually µ-independent collection of σ-algebras.

Proof. Suppose that Gi ⊆ F , i ∈ I is a mutually µ-independent collection of
π-systems. Let J be a finite subset of I. Let j ∈ J . Let

E = {E ∈ Gj : µ
(
∩i∈J\{j}Bi ∩ E

)
= µ(E)

∏
i∈J\{i}

µ(Bi), ∀(Bi, i ∈ J\{j}) ∈ ×i∈J\{j}Gi}.

We show that E is a λ-system. Since the Gi are mutually µ-independent, it is
clear that Ω ∈ E . Next, we show that E is closed under complements. Sup-
pose that A ∈ E . Let (Bi, i ∈ J \ {j}) ∈ ×i∈J\{j}Gi}. Then, µ(∩i∈J\{j}Bi) =
µ(∩i∈J\{j}Bi∩A)+µ(∩i∈J\{j}Bi∩Ac). But µ(∩i∈J\{j}Bi∩A) = µ(A)

∏
i∈J\{i} µ(Bi).

Rearranging, µ(∩i∈J\{j}Bi∩Ac) =
∏
i∈J\{i} µ(Bi)(1−µ(A)) = µ(Ac)

∏
i∈J\{i} µ(Bi).

Finally, we show that E is closed under disjoint unions. Suppose the collec-
tion (Ai, i ∈ N) is disjoint and each Ai is in E . Then, µ(∩i∈J\{j}Bi ∩ ∪iAi) =∑∞
i=1 µ(∩i∈J\{j}Bi∩Ai) = µ(∩i∈J\{j}Bi)

∑∞
i=1 µ(Ai) = µ(∩i∈J\{j}Bi)µ(∪iAi).

Now, by the π − λ theorem, if the G1,G2, . . . ,Gn are mutually µ-independent,
then σ(G1),G2, . . . ,Gn are mutually µ-independent. Iterating application of the
π−λ theorem, we have that σ(G1), σ(G2), . . . , σ(Gn) are mutually µ-independent.

It follows immediately that a collection of random variables Xi : (Ω,F , µ)→
(Si,Si), i ∈ I are mutually µ-independent if for any finite J ⊆ I, there is a
collection of mutually µ-independent π-systems, (π(Xi), i ∈ J), that generate
the σ-algebras (σ(Xi), i ∈ J).

Corollary 3.2.1. Suppose that X,Y are random variables and that the sigma
algebras σ(X), σ(Y ) are generated by countable almost surely clopen bases I(X),
I(Y ). Then the hypothesis of dependence {µ : X�

�|= µY } is statistically verifiable.

Proof. By Lemma 3.2.3, random variables X,Y are µ-independent iff µ(A∩B) =
µ(A)µ(B) for all A,B in a π-system generating σ(X), σ(Y ) respectively. Let
A(X),A(Y ) be the algebras generated by I(X), I(Y ). Obviously, A(X),A(Y )
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are π-systems. Furthermore, they are almost surely clopen by Corollary 3.1.1.
Therefore,

{µ : X��|= µY } =
⋃

A∈A(X),B∈A(Y )

{µ : µ(A ∩B) 6= µ(A)µ(B)}.

By Theorem 3.2.4, we have expressed the hypothesis of dependence as a count-
able union of statistically verifiable hypotheses. Therefore, {µ : X��|= µY } is
statistically verifiable by Lemma 3.2.2.

Proving that conditional dependence is in general statistically verifiable is some-
what more involved. Let (Ω,B, µ) be a probability space. A conditional expec-
tation of a random variable X given a sub σ-algebra F of B, E[X|F ], is any
real-valued random variable Y such that

1. Y is F measurable;

2. for all A ∈ F ,
∫
A
Xdµ =

∫
A
Y dµ.

Any Y satisfying (1-2) is called a version of the conditional expectation. A ver-
sion of the conditional expectation is guaranteed to exist by the Radon-Nikodym
theorem. Furthermore, if Y, Y ′ are versions of the conditional expectation, then
Y

a.s.
= Y ′. As a way to shake hands with the conditional expectation, we prove

the following simple facts:

Lemma 3.2.4.

1. E[1Ω|F ] = 1;

2. 1− E[1A|F ] = E[1Ac |F ];

3. For disjoint countable Ai, E[1∪Ai |F ] =
∑∞
i=1E[1Ai |σ(Z)].

Proof of Lemma 3.2.4.
1. Constant functions are obviously measurable, so the first condition is satis-
fied. Furthermore, for all A ∈ F ,

∫
A
1Ωdµ =

∫
1Adµ =

∫
A

1 · dµ.

2. Let Y = E[1A|F ]. Since pointwise sums and differences of measurable
functions are measurable, X = 1− Y is measurable. Suppose B ∈ F .∫

B

1Acdµ = µ(Ac ∩B)

= µ(B)− µ(A ∩B)

=

∫
B

dµ−
∫
B

1Adµ

=

∫
B

dµ−
∫
B

Y dµ

=

∫
B

Xdµ.
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3. Let Yk =
∑k
i=1E[1Ai |F ]. Let B ∈ F . There is a null set N such that for

every ω ∈ B \N ,
0 ≤ Yk(ω) ≤ Yk+1(ω) ≤ ∞.

(This is by almost sure positivity of the expectation of positive random vari-
ables.) Then, by the Monotone Convergence Theorem, Y = limk→∞ Yk is F-
measurable, and

lim
k→∞

∫
B

Ykdµ =

∫
B

Y dµ.

Similarly, by the Monotone Convergence Theorem, we have that

lim
k→∞

∫
B

k∑
i=1

1Aidµ =

∫
B

lim
k→∞

k∑
i=1

1Aidµ.

Therefore:∫
B

E[1∪Ai |F ]dµ =

∫
B

1∪∞i=1Ai
dµ =

∫
B

lim
k→∞

k∑
i=1

1Aidµ

= lim
k→∞

∫
B

k∑
i=1

1Aidµ = lim
k→∞

∫
B

k∑
i=1

E[1Ai |F ]dµ

=

∫
B

lim
k→∞

k∑
i=1

E[1Ai |F ]dµ =

∫
B

Y dµ.

The following Lemma connects the conditional expectation with familiar
ideas from basic probability theory.

Lemma 3.2.5. In the case that F is generated by a countable partition {Fi},
then

E(1B |F)
a.s.
=

∑
i :µ(Fi)>0

µ(B ∩ Fi)
µ(Fi)

1Fi ∀B ∈ B.

Proof of Lemma 3.2.5. Let

Y =
∑

i :µ(Fi)>0

µ(B ∩ Fi)
µ(Fi)

1Fi .

Since Y is constant on the Fi, it is F-measurable. Furthermore,

∫
Fj

Y dµ =

∫
Fj

∑
i :µ(Fi)>0

µ(B ∩ Fi)
µ(Fi)

1Fidµ

=

∫ ∑
i :µ(Fi)>0

µ(B ∩ Fi)
µ(Fi)

1Fi∩Fjdµ
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Therefore,∫
Fj

Y dµ =

{∫ µ(B∩Fj)
µ(Fj)

1Fjdµ = µ(B ∩ Fj), if µ(Fj) > 0

0, if µ(Fj) = 0,

and
∫
Fj
Y dµ =

∫
Fj
1Bdµ = µ(B ∩ Fj). Since the elements of F are countable,

disjoint unions of the Fi, we are done.

We also state without proof the following theorem, sometimes called Lévy’s
Upward Theorem, which helps to illuminate the conditional expectation:

Theorem 3.2.6 (Lévy’s Zero-One Law). Let (Ω,F , µ) be a probability space
and let X be a random variable with finite mean. Let F1 ⊂ F2 ⊂ · · · ⊂ F be a
filtration of F . Then

E[X|Fk]
a.s.−→ E[X|F ].

Proof of Theorem 3.2.6. See, for example, Theorem 5.6 in Ladd [2011].

As a consequence of Theorem 3.2.6 and Lemma 3.2.5, if the Fi are generated
by partitions {F i1, . . . , F ini}, then

E(1B |Fi) =
∑

k :µ(F ik)>0

µ(B ∩ F ik)

µ(F ik)
1F ik

a.s.−→ E(1B |F) ∀B ∈ B.

Let (Ω,F , µ) be a probability space, and let A,B be two subsets of F . We say
that A,B are µ-independent given a sub σ-algebra G ⊆ F , iff for every A ∈ A
and B ∈ B,

E[1A∩B |G] = E[1A|G]E[1B |G].

Two random variables X,Y defined over Ω are conditionally independent given
a third Z, written X |= µY |Z, iff σ(X) and σ(Y ) are conditionally independent
given σ(Z). The following Lemma states a result for conditional independence
analogous to Lemma 3.2.3 for unconditional independence.

Lemma 3.2.6. Two random variables X,Y are µ-conditionally independent
given Z iff for any π-systems, π(X), π(Y ), generating σ(X), σ(Y ), π(X) is in-
dependent of π(Y ) given σ(Z).

Proof of Lemma 3.2.6. Let X,Y be random variables taking values in measur-
able spaces (S,S), (S′,S ′). Let G ⊆ σ(Y ), and let

E = {E : E ∈ σ(X) and E[1E∩B |σ(Z)] = E[1E |σ(Z)]E[1B |σ(Z)] for all B ∈ G}.

We show that E is a λ-system. First, we show that Ω ∈ E . Since X is total,
X−1(S) = Ω ∈ σ(X). By Lemma 3.2.4, E[1Ω|σ(Z)] = 1. Therefore, for B ∈ G,
E[1B |σ(Z)] = E[1Ω∩B |σ(Z)] = E[1Ω|σ(X)]E[1B |σ(Z)], as required. Now we
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show that E is closed under complements. Suppose that A ∈ E and B ∈ G. By
the third part of Lemma 3.2.4,

E[1B |σ(Z)] = E[1A∩B |σ(Z)] + E[1Ac∩B |σ(Z)]

= E[1A|σ(Z)]E[1B |σ(Z)] + E[1Ac∩B |σ(Z)],

and therefore:

E[1B |σ(Z)](1− E[1A|σ(Z)]) = E[1Ac∩B |σ(Z)].

By the second part of Lemma 3.2.4:

E[1Ac∩B |σ(Z)] = E[1B |σ(Z)]E[1Ac |σ(Z)].

Finally, we show that E is closed under disjoint unions. Suppose the collection
(Ai)i∈N is disjoint and that each Ai is in E . By the third part of Lemma 3.2.4:

E[1B∩∪iAi |σ(Z)] =

∞∑
i=1

E[1B∩Ai |σ(Z)]

=

∞∑
i=1

E[1B |σ(Z)]E[1Ai |σ(Z)]

= E[1B |σ(Z)]

∞∑
i=1

E[1Ai |σ(Z)]

= E[1B |σ(Z)]E[1∪∞i=1Ai
|σ(Z)].

Now suppose that π(X) is µ-independent of π(Y ) given σ(Z). Then, by the
π−λ Theorem, σ(X) is µ-independent of π(Y ) given σ(Z). Applying the π−λ
theorem again, σ(X) is µ-independent of σ(Y ) given σ(Z).

The following theorem collects these facts to show that conditional dependence
is statistically verifiable.

Theorem 3.2.7. Suppose that X,Y, Z are random variables taking values in
an arbitrary measurable space, and that the σ-algebras σ(X), σ(Y ), σ(Z) are
generated by countable, almost surely clopen bases I(X), I(Y ), I(Z). Then the
hypothesis of conditional dependence, {µ : X�

�|= µY |Z}, is statistically verifiable.

Proof of Theorem 3.2.7. By Corollary 3.1.1, if I(Z) is almost surely clopen,
then the algebra that it generates, A(Z), is also almost surely clopen. Since
I(Z) is countable, it is possible to form a filtration of I(Z) by larger and larger
finite subsets. Let I1(Z) ⊂ I2(Z) ⊂ I3(Z) ⊂ · · · ⊂ I(Z) be such a filtration of
I(Z) such that for each i, |Ii(Z)| < ω. Let Ai(Z) be the finite algebra generated
by Ii(Z). Each Ai(Z) is generated by a finite, almost surely clopen partition
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{Ai1, . . . , Aini}.13

Suppose that X��|= µY |Z. By Lemma 3.2.6, there is R ∈ A(X), and S ∈ A(Y )
such that

E[1R∩S |σ(Z)]
µ−a.s.
6= E[1R|σ(Z)]E[1S |σ(Z)].

Let X = E[1R∩S |σ(Z)] and Y = E[1R|σ(Z)]E[1S |σ(Z)], and

C = {ω : X(ω) 6= Y (ω)}.

Then µ(C) > 0. Furthermore, let

Xi = E[1R∩S |Ai(Z)]

Yi = E[1R|Ai(Z)]E[1S |Ai(Z)].

Note that, since the Ai(Z) are generated by finite partitions {Ai1, . . . , Aini},

Xi =
∑

k :µ(Aik)>0

µ(R ∩ S ∩Aik)

µ(Aik)
1Aik

,

Yi =
∑

k :µ(Aik)>0

µ(R ∩Aik)µ(S ∩Aik)

µ(Aik)
1Aik

.

Letting B = {ω : Xi(ω) → X(ω)} and C = {ω : Yi(ω) → Y (ω)}, we have by
Levy’s Zero-One Law that µ(A) = µ(B) = 1. Furthermore, µ(A ∩ B ∩ C) ≥
µ(C) > 0. Therefore, there is ω ∈ A∩B ∩C and N such that XN (ω) 6= YN (ω).
That implies that there is an ANk such that µ(ANk ) > 0 and

µ(R ∩ S ∩ANk )

µ(ANk )
6= µ(R ∩ANk )µ(S ∩ANk )

µ(ANk )
.

That demonstrates that

{µ : X��|= µY |Z} =

=
⋃

A∈A(X),B∈A(Y ),C∈A(Z)

{
µ : µ(C) > 0,

µ(A ∩B ∩ C)

µ(C)
6= µ(A ∩ C)µ(B ∩ C)

µ(C)

}
,

which, by part (10) of Theorem 3.2.4, is a countable union of statistically veri-
fiable hypothesis. By Lemma 3.2.2, {µ : X��|= µY |Z} is statistically verifiable.

13To see that, note that if Ii(Z) = {Ii1, . . . , Iini}, then Ai(Z) is generated by events of the
form

⋂
j 6=i I

c
j ∩ Ii.
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3.2.4 Application: Causal Graphical Models

In the preceding we have taken a set of probability measures to represent all the
relevant epistemic possibilities, or “possible worlds”. If one were to pin down
the chances of all the events in the background algebra, one would know all there
is to know about the world. The framework of causal Bayes nets begins with
an enriched set of epistemic possibilities. The possible worlds are pairs (µ,G)
where µ is a probability measure that determines a probability distribution over
a set of observable variables V, and G is a causal graph over the variables in V.
Crucially, µ is taken to be the observational distribution, governing the chances
of events only when the world is passively observed. In turn, the graph G de-
termines the causal relations between the variables, which fixes the results of
interventions on variables in V.

Conventional statistical wisdom warns that it is foolhardy to infer anything
about the causal graph G from observational, or non-experimental, data. A
statistical dependency between X and Y is compatible with X being a cause
of Y , Y being a cause of X, or with their being some common cause of both
X and Y . One of the crucial insights of the literature inaugurated by Pearl
and Verma [1995], Spirtes et al. [2000] is that, given certain bridge principles
between causation and probability, some interesting causal conclusions are de-
termined by patterns of conditional independence. In this section, we introduce
some of the basic notions of the theory of causal discovery from observational
data, and demonstrate how it is illuminated by the preceding theory.

Let M be a set of probability measures on a measurable space (Ω,B). Let V
be a fixed, finite set of random variables X1, X2, . . . , Xn taking values in mea-
surable spaces (S1,S1), . . . , (Sn,Sn). Assume that each Xi is (B,Si) measurable.

Let DAG be the set of all directed, acyclic graphs on the fixed variable set V. The
presence of a directed edge from Xi to Xj in G is understood to mean that Xi is
a direct cause of Xj . Let G ∈ DAG. We say that Xi is a parent of Xj in G iff there
is a directed edge in G out of Xi and into Xj . We say that Xj is a child of Xi in
G iff there is a directed edge in G out of Xi and into Xj . We say that Xi, Xj are
adjacent in G iff Xi is either a parent or chid of Xj in G. We say that Xi is an
ancestor of Xj in G iff there is a directed path in G from Xi to Xj . We say that
Xj is a descendant of Xi in G iff there is a directed path in G from Xi to Xj . Let
parents(Xi,G), children(Xi,G), ancestors(Xi,G), descendants(Xi,G) be the set of
parents, children, ancestors and descendants of Xi in G.

One of the most important notions in the causal framework is d-separation. Sev-
eral preliminary notions are required. If U ⊆ V, Let G(U) be the subgraph of G
that contains only vertices in U . The moralization of G ∈ DAG is the undirected
graph GM , with the same vertices as G, where a pair of vertices Xi, Xj are con-
nected iff Xi and Xj are adjacent in G, or they have a common child in G. If
X ,Y,Z are disjoint subsets of V, we say that X is separated from Y given Z in
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GM iff every undirected path in GM from X to Y contains a member of Z. If
X ,Y,Z are disjoint subsets of V, we say that X and Y are d-separated given Z
in G iff X and Y are separated given Z in GM (ancestors(X ∪ Y ∪ Z,G)). Write
dsep(X ,Y,Z,G) as shorthand for X and Y are d-separated given Z in G. Write
¬dsep(X ,Y,Z,G) as shorthand for X and Y are not d-separated given Z in G.

The I-map partial order on DAGs is defined by setting G′ � G′′ iff ¬dsep(X ,Y,Z,G′)
implies ¬dsep(X ,Y,Z,G′′). In other words, G′ � G′′ if G′ entails all the same
d-separations that G′′ does. If G′ � G′′ and G′′ � G′, we say that G′,G′′ are
Markov equivalent, i.e. they entail all the same d-separation relations. Write
G′ ∼ G′′ iff G′ and G′′ are Markov equivalent, and let

[G] = {G′ ∈ DAG : G′ ∼ G},

be the Markov equivalence class of G. The I-map order is lifted to Markov
equivalence classes in the natural way. Say that G′ � [G′′] iff G′ � G′′. Say that
[G′] � [G′′] iff G′ � G′′. Verma and Pearl [1992] prove the following Theorem:

Theorem 3.2.8. G,G′′ ∈ DAG are Markov equivalent iff

1. G′ and G′′ have the same adjacencies, and

2. Xk is a common child of non-adjacent Xi, Xj in G′ iff Xk is a common
child of non-adjacent Xi, Xj in G′′.

The following concepts connect graphical concepts with probabilistic ones. A
measure µ ∈ M is Markov for G ∈ DAG iff for any three disjoint subsets of V,
X ,Y,Z, if X is d-separated from Y given Z, then X |= µY|Z. A measure µ ∈M
is faithful to G ∈ DAG iff for any three disjoint subsets of V, X ,Y,Z, if X is not
d-separated from Y given Z, then X��|= µY|Z. It is clear that a measure µ ∈W is
Markov (or faithful) to G iff it is Markov (or faithful) to every G′ in the Markov
equivalence class [G].

The set of possible worlds W is a subset of the cross product M × DAG. The
causal Markov assumption says that for all (µ,G) ∈ W, µ is Markov for G.
The causal faithfulness assumption is that for all (µ,G) ∈ W, µ is faithful to
G. Crucially, the causal Markov/faithfulness assumptions are not saying that
the true probability measure is Markov/faithful to some DAG, but rather that
the true probability measure is Markov and faithful to the true DAG. In par-
ticular, faithfulness rules out certain perfect observational illusions, where the
conditional independences are drastically misleading about the causal truth. So
misleading, in fact, that even in the limit of infinite data, one would not be able
to identify the true graph, not even up to Markov equivalence.14 Although the
causal Markov and faithfulness assumptions are hotly contested, together they
ensure that patterns of conditional dependence and independence are reliable

14For a good discussion of the causal faithfulness assumption, with examples, see Lin and
Zhang [2018].
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guides to the causal truth, at least up to Markov equivalence. Therefore, it is
crucial to investigate how hard it is to learn about conditional dependencies and
independencies from observational data. Given what we have developed in the
previous section, this is a straightforward task.

Theorem 3.2.9. Suppose that for Xi ∈ V, σ(Xi) is generated by a countable,
almost surely clopen basis I(Xi).15 Then, the following hypotheses are statisti-
cally refutable:

1. The true measure is Markov to G ∈ DAG;

2. The true measure is Markov to [G], for G ∈ DAG;

3. The true measure is Markov to some G ∈ DAG.

Proof of Theorem 3.2.9.

1. The set of measures Markov to G ∈ DAG can be expressed as

{µ ∈M : µ is Markov to G} =
⋂

dsep(X ,Y,Z,G)

{µ : X |= µY|Z}.

By Theorem 3.2.7, each element of the finite conjunction is statistically refutable.
By Lemma 3.2.2, the conjunction is statistically refutable.

2. The set of measures Markov to [G] is exactly the set of measures Markov to
G. Therefore, the second part is an immediate consequence of the first.

3. The set of measures Markov to some G ∈ DAG can be expressed as⋃
G∈DAG

{µ ∈M : µ is Markov to G}.

By Part 2, each member of the union is statistically refutable. Since the union
is finite, the disjunction is statistically refutable by Lemma 3.2.2.

Corollary 3.2.2. Suppose that the causal Markov and faithfulness assumptions
hold, and that for Xi ∈ V, σ(Xi) is generated by a countable, almost surely
clopen basis I(Xi). Then, the causal hypothesis

{(µ,G′) : [G′] � [G]}

is statistically refutable.

Proof of Corollary 3.2.2. It suffices to show that, under the causal Markov and
faithfulness assumptions,

{(µ,G′) : G′ � G} = {(µ,G′) : µ is Markov to G},
15Note that this entails, by Lemma 3.1.2, that for any I ⊆ {1, . . . , n},

∏
i∈I I(Xi) is a

countable, almost surely clopen basis for ⊗
i∈I

σ(Xi).
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which is statistically refutable by Theorem 3.2.9. Suppose (ν,G′′) is an element
of the lhs. Suppose that dsep(X ,Y,Z,G). Then, since G′ � G, dsep(X ,Y,Z,G′).
By the causal Markov assumption, X |= νY|Z. Therefore ν is Markov to G. We
have shown that the lhs is contained in the rhs. Suppose that (ν,G′) is an
element of the rhs. Then, ν is Markov to G. Suppose that dsep(X ,Y,Z,G). Then
X |= νY|Z. By the causal faithfulness assumption, ν is faithful to G′. Therefore,
dsep(X ,Y,Z,G′). So G′ � G. Since the rhs is statistically refutable by Theorem
3.2.9, we are done.

Theorem 3.2.10. Suppose that for Xi ∈ V, σ(Xi) is generated by a countable,
almost surely clopen basis I(Xi). Then, the following hypotheses are statistically
verifiable:

1. The true measure is faithful to G ∈ DAG;

2. The true measure is faithful to [G], for G ∈ DAG;

3. The true measure is faithful to some G ∈ DAG.

Proof of Theorem 3.2.10.

1. The set of measures faithful to G ∈ DAG can be expressed as

{µ ∈M : µ is faithful to G} =
⋂

¬dsep(X ,Y,Z,G)

{µ : X��|= µY|Z}.

By Theorem 3.2.7, each element of the finite conjunction is statistically veri-
fiable. Since the conjunction is finite, it is statistically verifiable by Lemma 3.2.2.

2. The set of measures faithful to [G] is exactly the set of measures faithful to
G. Therefore, the second part is an immediate consequence of the first.

3. The set of measures faithful to some G ∈ DAG can be expressed as⋃
G∈DAG

{µ ∈M : µ is faithful to G}.

By Part 1, each member of the union is statistically verifiable. By Lemma 3.2.2,
the union is statistically verifiable.

Corollary 3.2.3. Suppose that the causal Markov and faithfulness assumptions
hold, and that for Xi ∈ V, σ(Xi) is generated by a countable, almost surely
clopen basis I(Xi). Then, the causal hypothesis

{(µ,G′) : [G] � [G′]}

is statistically verifiable.
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Proof of Corollary 3.2.3. It suffices to show that, under the causal Markov and
faithfulness assumptions,

{(µ,G′) : G � G′} = {(µ,G′) : µ is faithful to G},

which is statistically verifiable by Theorem 3.2.10. Suppose (ν,G′) is an element
of the lhs. Suppose that ¬dsep(X ,Y,Z,G). Then, since G � G′, ¬dsep(X ,Y,Z,G′).
By the causal faithfulness assumption, ν is faithful to G′, and therefore X��|= νY|Z.
Therefore ν is faithful to G. We have shown that the lhs is contained in the rhs.
Suppose that (ν,G′) is an element of the rhs. Then, ν is faithful to G. Suppose
that ¬dsep(X ,Y,Z,G). Then X��|= νY|Z. By the causal Markov assumption, ν
is Markov to G′. Therefore, ¬dsep(X ,Y,Z,G′). So G � G′, and the rhs is con-
tained in the lhs. Since the rhs is statistically verifiable by Theorem 3.2.9, we
are done.

3.3 Monotonic Statistical Verification and Refu-
tation

3.3.1 Defining the Success Concept

In section 3.2, we said that (λn) is a statistical verifier of H if it converges to
H if H is true, and that otherwise has a small chance of drawing an erroneous
conclusion. But that standard is consistent with a wild see-sawing in the chance
of producing the informative conclusion H as sample sizes increase, even if H
is true. Of course, it is desirable that the chance of correctly producing H
increases with the sample size, i.e. that for all µ ∈ H and n1 < n2,

Mon. µn2 [λ−1
n2

(H)] > µn1 [λ−1
n1

(H)].

Failing to satisfy Mon has the perverse consequence that collecting a larger
sample might be a bad idea! Researchers would have to worry whether a failure
of replication was due merely to a clumsily designed statistical method that con-
verges to the truth along a needlessly circuitous route. Unfortunately, Mon is
infeasible in typical cases, so long as we demand that verifiers satisfy VanErr.
Lemma 3.3.1 expresses that misfortune.

Say that a chance setup (W,Ω, I) is purely statistical iff for all µ ∈ W and
all events B ∈ B⊗n such that µn(bdryB) = 0, µn(B) > 0. This is the formal
expression of the idea that almost surely clopen sample events have no logical
bearing on statistical hypotheses.

Lemma 3.3.1. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Suppose furthermore that (W,Ω, I) is purely statistical. Let H be open, but not
closed in the weak topology. If (λn) is an α-verifier in chance of H, then, (λn)
satisfies VanErr only if it does not satisfy Mon.
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Figure 3.1: Diachronic plot of power of the test exhibited in the proof of Lemma
3.2.1. The plot exhibits the characteristic “saw-tooth” shape. The null hypoth-
esis is that µ(B) ≤ .5. At the true world µ(B) = .875. Note that the power
drops by > .06 between sample sizes 43 and 46.

Proof of Lemma 3.3.1. Suppose that H is open, but not closed in the weak
topology. Let ν ∈ clH \ H. Suppose that (λn) is an α-verifier in chance of
H and that λn satistfies VanErr. Since the chance setup is purely statistical,
αn1

= µn1 [λ−1
n1

(H)] > 0. Let O′ = {µ : αn1
−ε < µn1 [λ−1

n1
(H)]}. By construction

ν ∈ O′. Since (λn) satisfies VanErr, there is n2 > n1 such that µn2 [λ−1
n2

(H)] <
αn1 − ε. Let O′′ = {µ : αn1 − ε > µn1 [λ−1

n1
(H)]}. By construction ν ∈ O′′.

Since (λn) is feasible, both O′, O′′ are open in the weak topology. Therefore,
O = O′∩O′′ is open in the weak topology and ν ∈ O. But since ν ∈ cl(H), there
is µ ∈ H ∩O. But then µn1 [λ−1

n1
(H)] > αn1

− ε, whereas µn2 [λ−1
n2

(H)] < αn1
− ε.

Therefore, (λn) does not satisfy Mon.

But even if strict monotonicity of power is infeasible, it ought to be our
regulative ideal. Say that an α-verifier (λn)n∈N of H, whether in chance, or
almost sure, is α-monotonic iff for all µ ∈ H and n1 < n2:

α-Mon µn2 [λ−1
n2

(H)] + α > µn1 [λ−1
n1

(H)].

Satisfying α-Mon ensures that collecting a larger sample is not a disastrously
bad idea. Surprisingly, some standard hypothesis tests fail to satisfy even this
weak requirement. Chernick and Liu [2002] noticed non-monotonic behavior in
the power function of textbook tests of the binomial proportion, and proposed
heuristic software solutions. The test exhibited in the proof of Lemma 3.2.1 also
displays dramatic non-monotonicity (Figure 3.1). Others have raised worries of
non-monotonicity in consumer safety regulation, vaccine studies, and agronomy
[Musonda, 2006, Schaarschmidt, 2007, Schuette et al., 2012].
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We now articulate a notion of statistical verifiability that requires α-monotonicity.
Write an ↓ 0 if the sequence (an) converges monotonically to zero. Say that a
family (λn)n∈N of feasible tests of Hc ⊆W is an α-monotonic verifier of H iff

MVanErr. For all µ ∈ Hc, there exists a sequence (αn) such that each αn ≤ α,
αn ↓ 0, and µn[λ−1

n (H)] ≤ αn;

LimCon. For all µ ∈ H, µn[λ−1
n (H)]

n−→ 1;

α-Mon. For all µ ∈W , µn1 [λ−1
n1

(H)]− µn2 [λ−1
n2

(H)] < α, if n1 < n2.

Say that H is α-monotonically verifiable iff there is an α-monotonic verifer of
H. Say that H is monotonically verifiable iff H is α-monotonically verifiable,
for every α > 0.

It is clear that every α-monotonic verifier of H is also an α-verifier in chance.
However, not every α-monotonic verifier of H is an almost sure α-verifier. As
is clear from Figure 3.1, the converse also does not hold.

Defining monotonic refutability requires no new ideas. Say thatH is α-monotonically
refutable in chance iff there is an α-monotonic verifier of Hc. Say that H is mon-
tonically refutable iff Hc is α-monotonically verifiable for every α > 0.

3.3.2 Characterization Theorems

The central theorem of this section states that every statistically verifiable hy-
pothesis is also monotonically verifiable.

Theorem 3.3.1. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for H ⊆W, the following are equivalent:

1. H is α-verifiable in chance for some α > 0;

2. H is monotonically verifiable;

3. H is almost surely verifiable;

4. H is open in the weak topology on W .

The characterization of monotonic refutability follows immediately.

Theorem 3.3.2. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for H ⊆W, the following are equivalent:

1. H is α-refutable in chance for some α > 0;

2. H is monotonically refutable;

3. H is almost surely refutable;
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4. H is closed in the weak topology on W .

The proof of Theorem 3.3.1 is somewhat involved. Theorem 3.2.1 states that 1, 3
and 4 are equivalent. The fact that 2 implies 1 is immediate from the definitions.
To prove that 4 implies 2, we proceed largely as before, with greater attention
to details. First, we prove the somewhat technical Lemma 3.3.2, which says
that if you have a countable collection of αi-monotonic verifiers (λ1

n), (λ2
n), . . .,

of hypotheses A1, A2, . . . , then it is possible to construct a countable collection
of mutually independent monotonic verifiers for the Ai. The idea behind the
construction is very rudimentary: you can always render methods independent
by splitting up the sample in the appropriate way. Then, we show in Lemma
3.3.3, that for almost surely decidable A, the hypothesis {µ : µ(A) > r} is
monotonically verifiable. That entails that every element of the subbasis for the
weak topology exhibited in Theorem 3.1.3 is almost surely verifiable. Finally, we
show in Lemmas 3.3.4, and 3.3.5, that the monotonically verifiable propositions
are closed under finite intersections, and countable unions, which completes the
proof. It remains to prove the four crucial Lemmas.

Lemma 3.3.2. Suppose that I is a countable index set and that for i ∈ I,
(ψin)n∈N is an αi-monotonic verifier of Ai. Then, there exist (λ1

n), (λ2
n), . . .

where each (λin)n∈N is an αi-monotonic verifier of Ai, and for each n, (σ(λin), i ∈
I) are mutually independent.

Proof of 3.3.2. The basic idea is to render the (ψin) mutually independent by
splitting the sample and feeding it to the individual verifiers according to a
triangular dovetailing scheme. Represented in tabular form:

(ψ1
n) (ψ2

n) (ψ3
n) (ψ4

n) · · ·

ω1

ω2 ω3

ω4 ω5 ω6

ω7 ω8 ω9 ω10

ω11 ω12 ω13 ω14 · · ·
...

...
...

... · · ·

The samples in the ith column of the table are the samples that are fed to the
ith verifier. Since the verifiers are essentially functions of disjoint samples, they
are mutually independent. Since the samples are i.i.d. all of the desirable sta-
tistical properties of the verifiers are preserved. Before we formalize this idea,
we develop some fundamentals.

If J is a subset of {1, . . . , n}, let pnJ be the projection from Ωn to Ω|J| with

pnJ(ω1, . . . , ωn) = (ωi, i ∈ J).
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To get our bearings, we show that the projection function is (B⊗n,B⊗|J|) mea-
surable. It is clear that the collection

{A ∈ B⊗|J| : (pnJ)−1(A) ∈ B⊗n}

is a λ-system. Furthermore, the collection of rectangular sets

R = {×i∈JAi : Ai ∈ B}

is a π-system that generates B⊗|J|.16 Therefore, by the π − λ theorem it is
sufficient to show that (pnJ)−1(A) ∈ ⊗ni=1B for every A ∈ R. But that is
straightforwardly true, since

(pnJ)−1(×i∈JAi) = ×ni=1Bi,

where Bi = Ai if i ∈ J, and Bi = Ω, otherwise.

Next we show that for A ∈ ⊗|J|i=1B,

µn[(pnJ)−1(A)] = µ|J|(A). (3.1)

This is another straightforward application of the π − λ theorem. Let

S = {A ∈ B⊗|J| : µn[(pnJ)−1(A)] = µ|J|(A)}.
First we show that S is a λ-system. It is clear that Ω|J| ∈ S. Next, we show
that S is closed under countable disjoint union. Suppose that A1, A2, . . . are
disjoint and in S. Since the preimage of a disjoint union is the disjoint union of
the preimages: µn[(pnJ)−1(tAi)] = µn[t(pnJ)−1(Ai)] =

∑∞
i=1 µ

n[(pnJ)−1(Ai)] =∑∞
i=1 µ

|J|(Ai) = µ|J|[tAi]. Finally, we show that S is closed under complements.
Suppose that A ∈ S. Since the preimage of the complement is the complement of
the preimage: µn[(pnJ)−1(Ω|J| \A)] = µn[Ωn \ (pnJ)−1(A)] = 1−µn[(pnJ)−1(A)] =
1− µ|J|[A] = µ|J|[Ω|J| \A]. Therefore S is a λ-system. It remains to show that
the π-system R ⊆ S. Recall that

(pnJ)−1(×i∈JAi) = ×ni=1Bi,

where Bi = Ai if i ∈ J, and Bi = Ω, otherwise. Therefore, by the definition of
the product measure, µn[(pnJ)−1(×i∈JAi)] =

∏
i∈J µ(Ai) = µ|J|(×i∈JAi).

Let J1, J2, . . . , Jk be disjoint subsets of {1, . . . , n}. We show that

σ(pnJ1), . . . , σ(pnJk) are mutually µn-independent. (3.2)

By Lemma 3.2.3, it suffices to show that there are mutually µn-independent
generating π-systems π(pnJ1), . . . , π(pnJk). Let

RJi = {×i∈JiAi : Ai ∈ B},
16To see that it is a π-system recall that the intersection of a cartesian product is the

cartesian product of the component-wise intersections.
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and π(pnJi) = (pnJi)
−1(RJi).17 For i ∈ {1, . . . k}, let Ei ∈ π(pnJi). Then Ei =

(pnJi)
−1(×k∈JiAi,k) = ×nk=1Bk, where Bk = Ai,k if k ∈ Ji and Bk = Ω, other-

wise. Therefore, ∩ki=1Ei = ×nk=1Bk, where Bk = Ai,k if there is Ji such that
k ∈ Ji, and Bk = Ω, otherwise. By the definition of the product measure,
µn(∩ki=1Ei) =

∏k
i=1 µ

|Ji|(×k∈JiAi,k). By (1), above,
∏k
i=1 µ

|Ji|(×k∈JiAi,k) =∏k
i=1 µ

n(Ei), and we are done.

Recall the table presented at the beginning of this proof. Notice that the indices
along the diagonal are given by the triangular numbers Ti =

(
i+1
2

)
. Define:

ni,1 = Ti;

ni,j = ni,j−1 + i+ j − 2.

So, for example, the indices along the second column are given by n2,1 =
3, n2,2 = 5, n2,3 = 8, . . . Define:

k(n) = max
i

Ti ≤ n;

ni(n) = max
j

ni,j ≤ n.

The function k(n) returns the number of verifiers which are fed samples at
sample size n. For example, k(8) = 3, since the third column is the rightmost
column “visited” by sample size 8. The function ni(n) returns the effective
sample size for the ith method at sample size n. For example, n1(8) = 4, n2(8) =
3, n3(8) = 1, since these are the lowermost rows “visited” in columns 1, 2 and 3,
by sample size 8. Define, Iin, the set of indices of samples fed to the ith method
at sample size n, as follows:

Iin = (ni,1, . . . , ni,ni(n)).

Let

λin(ω1, . . . , ωn) =

{
ψini(n) ◦ pnIin(ω1, . . . , ωn), if k(n) ≥ i,
W, otherwise.

Since σ(λin) ⊆ σ(pnIin
), the σ-algebras σ(λ1

n), σ(λ2
n), . . . are mutually µn-

independent by (2), above.

It remains to show that each (λin) is an αi-monotonic verifier of Ai. Since
(ψin) is an αi-monotonic verifier of Ai, for each µ ∈ Ac

i there is (αn) such that

17To check that π(pnJi ) is a π-system note that if C is a π-system and f is a function, then

f−1(C) is a π-system. To check that π(pnJi ) generates σ(pnJi ) note that if C is a collection of sets

and f is a function, then f−1(σ(C)) = σ(f−1(C)). So we have that σ(pnJi ) = (pnJi )
−1(B⊗|Ji|) =

(pnJi )
−1(σ(RJi )) = σ((pnJi )

−1(RJi )).
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each αn < αi, αn ↓ 0 and µn[ψ−1
n (Ai)] ≤ αn. For n < ni,1, µn[(λin)−1(Ai)] = 0.

And for n ≥ ni,1,

µn[(λin)−1(Ai)] = µn[(pnIin)−1((ψini(n))
−1(Ai))]

= µni(n)[(ψini(n))
−1(Ai)]

≤ αni(n) ≤ αi,

where we have invoked (1), above, to get to the second line. Therefore, letting

α′n =

{
αi, if n < ni,1

αni(n), otherwise,

we have that each α′n ≤ αi, α
′
n ↓ 0 and µn[(λin)−1(Ai)] ≤ α′n. So the

(λin) satisify MVanErr. Furthermore, for µ ∈ Ai, limn µ
n[(λin)−1(Ai)] =

limn µ
ni(n)[(ψini(n))

−1(Ai)] = 1. Therefore, the (λn) satisfy LimCon. Finally,

to see that the (λin) satisfy αi-Mon, notice that, for n1 < ni,1,

µn1 [(λin1
)−1(Ai)]− µn2 [(λin2

)−1(Ai)] ≤ 0 < αi.

And for n1 ≥ ni,1,

µn1 [(λin1
)−1(Ai)]− µn2 [(λin2

)−1(Ai)] =

= µni(n1)[(ψini(n1))
−1(Ai)]− µni(n2)[(ψini(n2))

−1(Ai)]

≤ αi,

as required.

Lemma 3.3.3. Suppose that B is almost surely decidable for every µ ∈ W .
Then, for all real b, the hypothesis H = {µ : µ(B) > b} is monotonically
verifiable.

Proof of Lemma 3.3.3. We restrict attention to the non-trivial cases where b ∈
(0, 1). The idea is to take an almost sure α-verifier of H and modify it slightly
to ensure α-monotonicity. Let (λn)n∈N be the a.s. α-verifier exhibited in the

proof of Lemma 3.2.1, i.e letting tn =
√

1
2n ln(π2n2/6α),

λn(~ω) =

{
H, if

∑n
i=1 1B(ωi) ≥ dn(b+ tn)e,

W, otherwise.

Let

βn(θ) =

n∑
dn(b+tn)e

(
n

k

)
θk(1− θ)n−k.

Then, βn(µB) = µn[λ−1
n (H)]. It is something of a nuisance that βn(θ) is exactly

zero for n such that dn(b + tn)e > n. Since the tn converge monotonically to
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0, this is the case for only finitely many initial sample sizes n. For example,
for b = .5, α = .05, βn(θ) is non-trivial for samples sizes larger than 20. Let
n0 = min{n : dn(b+ tn)e ≤ n}.

It is worth pointing out some additional features of the βn(θ) that we will be
appealing to in the following. It is evident that, since βn(θ) is a polynomial,
it is a continuous function of the parameter θ. Although it is “obviously” true
that, for n ≥ n0, βn(θ) is stricly increasing in θ, it is surprisingly non-trivial
to demonstrate. For an elegant proof of this fact, see Gilat [1977]. It is a
standard fact of analysis that that if [a, b], [c, d] are closed real intervals and
f : [a, b]→ [c, d] is a continuous real function, then f is bijective iff it is strictly
increasing. Therefore, for n ≥ n0, βn : [0, 1]→ [0, 1] is bijective.

There are two important properties of the collection (βn(θ))n∈N that follow
from the fact that (λn) is an almost sure verifier: (1) for θ > b, limn βn(θ) = 1;
(2)

∑
n supθ≤b βn(θ) =

∑
n βn(b) < α. The first property follows from Lim-

Con. The second property follows from σ-BndErr and the fact that βn(θ)
is increasing. Define αn = βn(b). Note that for n ≥ n0, αn > 0. Let
α∗n = min{αm : n0 ≤ m ≤ n}. For n ≥ n0, let

Kn = max{k ∈ N : α+ kαn < 1− α∗n}.

Now, define the increasing step function:

φn(θ) =


0, βn(θ) < α,

α+ kαn, α+ (k − 1)αn ≤ βn(θ) < α+ kαn, k ∈ {1, . . . ,Kn},
1− α∗n, βn(θ) ≥ α+Knαn.

We first show that βn(θ) − φn(θ) < α. If βn(θ) < α, then βn(θ) − φn(θ) ≤
βn(θ) < α. Furthermore, φn(θ) > βn(θ) for θ such that α ≤ βn(θ) < α+Knαn.
Finally, for θ such that βn(θ) ≥ α+Knαn, βn(θ)−φn(θ) ≤ 1−φn(θ) = α∗n < α.

For n ≥ n0, let θn,i = β−1
n (α + iαn), for i ∈ {0, . . . ,Kn}. (The θn,i are well

defined because βn(θ) is surjective whenever n ≥ n0.) Note that since for each
i, β−1

n (θn,i) ≥ α, each θn,i > b. Since limn βn(θ) → 1 for all θ > b, there is
a least N > n, such that for all i ∈ {0, . . . ,Kn}, βN (θn,i) > φn(θn,i). For all
n, define σ(n) to be the least such N . Define σ0(n) := n, σ1(n) := σ(n), and
σm(n) := σ(σm−1(n)).

We show that βσ(n)(θ) ≥ φn(θ). Suppose that θ < θn,0. Then βn(θ) < α, and
φn(θ) = 0 ≤ βσ(n)(θ). Suppose that θn,i ≤ θ < θn,i+1 for i ∈ {0, . . . ,Kn − 1}.
Then, βσ(n)(θ) ≥ βσ(n)(θn,i) > φn(θn,i) = φn(θ). Finally, suppose that θ ≥
θn,Kn . Then, similarly, βσ(n)(θ) ≥ βσ(n)(θn,Kn) > φn(θn,Kn) = φn(θ).

Now we show that φσ(n)(θ) ≥ φn(θ). Suppose that βσ(n)(θ) < α. Then, since,
φn(θ) < βσ(n)(θ), it follows that φn(θ) < α, and therefore, φn(θ) = 0 ≤ φσ(n)(θ).
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Figure 3.2: The basic idea of the proof is encapsulated in the figure. For any
sample size n, we construct a step function φn that “almost dominates” the
power function βn. The step function dominates βn for all θ except those for
which βn(θ) is less than α, or close to 1. Then, since the set of steps is finite,
and the original test satisfies LimCon, there must be a sample size σ(n) such
that the power function βσ(n) strictly dominates the step function. Since βσ(n)

dominates the step function, βσ(n)(θ) can only be less than βn(θ) if βn(θ) is
less than α, or they are both close to 1. The loss of power from n to σ(n) is
thereby bounded by α. Iterating this process we get a sequence of “good” sample
sizes n, σ(n), σ2(n), . . . such that the power is “almost increasing”. To ensure α-
monotonicity, it remains only to interpolate the intermediate sample sizes with
test methods that throw out data points until they arrive at the nearest “good”
sample size.

Suppose that α ≤ βσ(n) < α +Kσ(n)ασ(n). Then, φn(θ) ≤ βσ(n)(θ) < φσ(n)(θ).
Finally, if βσ(n) ≥ α+Kσ(n)ασ(n), then φσ(n) = 1− α∗σ(n) ≥ 1− α∗n ≥ φn(θ).

It is now easy to show that βn(θ) − βσm(n)(θ) < α, since βn(θ) − βσm(n)(θ) ≤
βn(θ)−φσm−1(n)(θ) ≤ βn(θ)−φn(θ) < α. Therefore, for an increasing sequence
of “good” sample sizes, n, σ(n), σ2(n), . . ., the verifier {λn} is α-monotonic. Fur-
thermore, since the sequence (βσm(n)(b))m∈N converges to zero, there exists a
subsequence (βn∗i (b))i∈N that converges monotonically to zero. We use these
facts to construct a verifier that is α-monotonic, by patching over the “bad”
sample sizes.

Let π(n) = max{n∗i : n∗i ≤ n}. Let λ∗n(ω1, . . . , ωn) := λπ(n)(ω1, . . . , ωπ(n)). We
have taken pains to ensure that (λ∗n) satisfies α-Mon. Since

sup
µ∈Hc

µn[λ−1
n (H)] ≤ βπ(n)(b) ↓n 0,

(λn) satisfies MVanErr. Since (λn) is an almost sure verifier, the set C =
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{ω ∈ Ω∞ : λn(ω|n)→ H} has µ∞(C) = 1 for every µ ∈ H. But if the sequence
(λn(ω|n)) converges to H then so does the subsequence (λπ(n)(ω|π(n))). There-
fore C ⊆ C∗ = {ω ∈ Ω∞ : λπ(n)(ω|π(n))→ H}. Therefore, µ∞[lim inf(λ∗n)−1(H)] =
1, if µ ∈ H, and (λ∗n) satisfies SLimCon. A fortiori, it also satisfies LimCon.
Since α > 0 was arbitrary, we are done.

Lemma 3.3.4. The monotonically verifiable propositions are closed under finite
conjunctions.

Proof of Lemma 3.3.4. By Lemma 3.3.2, it suffices to show that if (λ1
n), . . . , (λkn)

are mutually independent αi-monotonic verifiers of A1, . . . , Ak, with α =
∑
i αi,

then

λn(~ω) =

{
∩ki=1Ai, if λin(~ω) = Ai for all i ∈ {1, . . . , k},
W, otherwise,

is an α-monotonic verifier of ∩ki=1Ai.

Consider the case where k = 2. We first demonstrate that (λn) satisfies MVan-
Err. Suppose µ /∈ A1 ∩ A2. Without loss of generality, suppose that µ /∈ A1.
By assumption there exists a sequence (α1

n) such that α1
n < α1, αn ↓ 0 and

µn[(λ1
n)−1(A1)] < α1

n. Noticing that

µn[λ−1
n (A1 ∩A2)] = µn[(λ1

n)−1(A1) ∩ (λ2
n)−1(A2)]

≤ µn[(λ1
n)−1(A1)]

≤ α1
n,

we see that (λn) also satisfies MVanErr.

Suppose that µ ∈ A1 ∩A2. We demonstrate that (λn) satisfies LimCon.

µn[λ−1
n (A1 ∩A2)] = µn[(λ1

n)−1(A1) ∩ (λ2
n)−1(A2)]

= 1− µn[(λ1
n)−1(W ) ∪ (λ2

n)−1(W )]

≥ 1− µn[(λ1
n)−1(W )] + µn[(λ2

n)−1(W )].

But since µn[(λ1
n)−1(W ) + µn[(λ2

n)−1(W )]→ 0, it follows that

µn[λ−1
n (A1 ∩A2)]→ 1.

It remains to show that (λn)n∈N satisfies α-Mon. To make the expressions more
manageable, we make the following substitutions:

a
nj
i = µnj [(λinj )

−1(Ai)].

Under the assumption of independence:

µn1 [ψ−1
n1

(A1 ∩A2)]− µn2 [ψ−1
n2

(A1 ∩A2)] = an1
1 an1

2 − an2
1 an2

2 .
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By assumption, an1
1 − an2

1 < α/2 and an1
2 − an2

2 < α/2. Therefore:

an1
1 an1

2 − an2
1 an2

2 < an1
1 an1

2 − an2
1 (an1

2 − α/2)

= an1
1 an1

2 − an2
1 an1

2 + an2
1 · α/2

= an1
2 (an1

1 − an2
1 ) + an2

1 · α/2
< an1

2 · α/2 + an2
1 · α/2

≤ α.

The case when k > 2 follows immediately by induction.

Lemma 3.3.5. The monotonically verifiable propostions are closed under count-
able disjunction.

Proof of Lemma 3.3.5. By Lemma 3.3.2, it suffices to show that if (λ1
n), . . . , (λkn), . . . ,

are mutually independent αi-monotonic verifiers of A1, . . . , Ak, . . . , such that∑∞
i=1 αi converges to α, then,

λn(~ω) =

{
∪∞i=1Ai, if λin(~ω) = Ai for some i ∈ {1, . . . , n},
W, otherwise,

is an α-monotonic verifier of ∪∞i=1Ai.

We first demonstrate that (λn) satisfies MVanErr. Suppose that µ /∈
∪∞i=1Ai. Then, for each i there is (αin) such that αin < αi, α

i
n ↓ 0, and

µn[(λin)−1(Ai)] ≤ αin. Therefore,

µn[λ−1
n (∪∞i=1Ai)] = µn[∪ni=1(λin)−1(Ai)]

≤
n∑
i=1

µn[(λin)−1(Ai)]

≤
∞∑
i=1

αin ≤ α.

It remains to show that Sn =
∑∞
i=1 α

i
n converges monotonically to zero as

n → ∞. Since αin ≥ αin+1 for each i, we have that Sn ≥ Sn+1. Therefore,
the sequence (Sn) is decreasing and bounded below by zero. By the monotone
convergence theorem, the sequence (Sn) converges to its infimum. We show
that the infimum is zero. Let ε > 0. Since the tail of a convergent series tends
to zero, there is K such that

∑∞
i=K αi < ε/2. Therefore, Tn =

∑∞
i=K α

i
n < ε/2.

Since Sn = Tn +
∑K−1
i=1 αin, and

∑K−1
i=1 αin → 0 as n→∞, there is N such that

Sn < ε for n ≥ N . Since ε was arbitrary, we are done.

Suppose that µ ∈ ∪∞i=1Ai. We show that (λn) satisfies LimCon. Since µ ∈
∪∞i=1Ai, there is k such that µ ∈ Ak. For n ≥ k,
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µn[λ−1
n (∪∞i=1Ai)] = µn[∪ni=1(λin)−1(Ai)]

≥ µn[(λkn)−1(Ak)].

But since µn[(λkn)−1(Ak)]→ 1, we have that µn[λ−1
n (∪∞i=1Ai)]→ 1.

It remains to show that (λn) satisfies α-Mon. By the inclusion-exclusion for-
mula:

µn[λ−1
n (∪∞i=1Ai)] = µn[∪ni=1(λin)−1(Ai)] =

=

n∑
i=1

µn[(λin)−1(Ai)]−
∑
i<j<n

µn[(λin)−1(Ai) ∩ (λjn)−1(Aj)]

+
∑

i<j<k<n

µn[(λin)−1(Ai) ∩ (λjn)−1(Aj) ∩ (λkn)−1(Ak)] + · · ·

+ (−1)n−1µn[∩ni=1(λin)−1(Ai)].

To make the expressions more manageable, we make the following substitutions:

ani = µn[(λin)−1(Ai)].

Since the verifiers are mutually independent:

µn[λ−1
n (∪iAi)] =

n∑
i=1

ani −
∑
i<j<n

ani a
n
j + · · ·+ (−1)n−1an1a

n
2 · · · ann.

Or, in closed form:

µn[λ−1
n (∪iAi)] =

n∑
j=1

(−1)j−1
∑

I⊂{1,...,n}
|I|=j

∏
i∈I

ani

 .

Furthermore, for n1 < n2,

µn2 [λ−1
n2

(∪iAi)] = µn2 [∪n2
i=1(λin2

)−1(Ai)]

≥ µn2 [∪n1
i=1(λin2

)−1(Ai)]

=

n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j

∏
i∈I

an2
i

 .
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Therefore,

µn1 [λ−1
n1

(∪iAi)]− µn2 [λ−1
n2

(∪iAi)] =

=

n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j

∏
i∈I

an1
i

− n2∑
j=1

(−1)j−1
∑

I⊂{1,...,n2}
|I|=j

∏
i∈I

an2
i



≤
n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j

∏
i∈I

an1
i

− n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j

∏
i∈I

an2
i



=

n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j

(∏
i∈I

an1
i −

∏
i∈I

an2
i

) .

Next, we demonstrate that

∏
i∈I

an1
i −

∏
i∈I

an2
i =

∑
i∈I

(an1
i − an2

i )
∏

j∈I,j<i
an2
j

∏
j∈I,j>i

an1
j

 .

By induction on |I|. Let k = max i ∈ I.

∏
i∈I

an1
i −

∏
i∈I

an2
i = an1

k

∏
i∈I\{k}

an1
i − an1

k

∏
i∈I\{k}

an2
i + (an1

k − an2

k )
∏

i∈I\{k}

an2
i

= an1

k

 ∏
i∈I\{k}

an1
i −

∏
i∈I\{k}

an2
i

+ (an1

k − an2

k )
∏

i∈I\{k}

an2
i

= an1

k

 ∑
i∈I\{k}

(an1
i − an2

i )
∏

j∈I\{k},j<i

an2
j

∏
j∈I\{k},j>i

an1
j

+ (an1

k − an2

k )
∏

i∈I\{k}

an2
i

=
∑

i∈I\{k}

(an1
i − an2

i )
∏

j∈I,j<i
an2
j

∏
j∈I,j>i

an1
j

+ (an1

k − an2

k )
∏

i∈I\{k}

an2
i

=
∑
i∈I

(an1
i − an2

i )
∏

j∈I,j<i
an2
j

∏
j∈I,j>i

an1
j

 .

Therefore,
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µn1 [λ−1
n1

(∪iAi)]− µn2 [λ−1
n2

(∪iAi)] ≤

≤
n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j

(∏
i∈I

an1
i −

∏
i∈I

an2
i

)

=

n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j

∑
i∈I

(an1
i − an2

i )
∏

k∈I,k<i

an2

k

∏
k∈I,k>i

an1

k


=

n1∑
j=1

(−1)j−1
n1∑
i=1

(an1
i − an2

i )
∑

I⊂{1,...,n1}
|I|=j,i∈I

∏
k∈I,k<i

an2

k

∏
k∈I,k>i

an1

k

=

n1∑
i=1

(an1
i − an2

i )

n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j,i∈I

∏
k∈I,k<i

an2

k

∏
k∈I,k>i

an1

k

Noticing that

n1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}
|I|=j,i∈I

∏
k∈I,k<i

an2

k

∏
k∈I,k>i

an1

k =

=

n1−1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}\{i}
|I|=j

∏
k∈I,k<i

an2

k

∏
k∈I,k>i

an1

k

=

n1−1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}\{i}
|I|=j

µn2

 ⋂
k∈I,k<i

(λkn2
)−1(Ak)

µn1

 ⋂
k∈I,k>i

(λkn1
)−1(Ak)



=

n1−1∑
j=1

(−1)j−1
∑

I⊂{1,...,n1}\{i}
|I|=j

µn1 × µn2

 ⋂
k∈I,k>i

(λkn1
)−1(Ak)×

⋂
k∈I,k<i

(λkn2
)−1(Ak)


= µn1 × µn2

[⋃
k>i

(λkn1
)−1(Ak)× Ωn2 ∪

⋃
k<i

Ωn1 × (λkn2
)−1(Ak)

]
≤ 1,

where the last equality follows from the inclusion-exclusion principle. It follows
that
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µn1 [λ−1
n1

(∪iAi)]− µn2 [λ−1
n2

(∪iAi)] ≤
n1∑
i=1

(an1
i − an2

i )

≤
n1∑
i=1

αi < α,

as required.

3.3.3 Monotonic Verification of Statistical Dependence

In light of the results of the previous section, it is straightforward to show that
hypotheses of conditional dependence are monotonically verifiable.

Theorem 3.3.3. For almost surely clopen events A,B,C and r ∈ [0, 1], the
following hypotheses are monotonically verifiable:

1. {µ : µ(A) > r};
2. {µ : µ(A) < r};
3. {µ : µ(A)µ(B) > r};
4. {µ : 0 < µ(A)µ(B) < r};
5. {µ : µ(A ∩B) 6= µ(A)µ(B)};

6. {µ : µ(C) > 0, µ(A)
µ(C) > r};

7. {µ : µ(C) > 0, µ(A)
µ(C) < r};

8. {µ : µ(C) > 0, µ(A)µ(B)
µ(C) > r};

9. {µ : µ(C) > 0, 0 < µAµB
µC < r};

10. {µ : µ(C) > 0, µ(A∩B∩C)
µ(C) 6=

µ(A∩C)µ(B∩C)
µ(C) }.

Proof of Theorem 3.3.3. The arguments are identical, except we invoke Lemma
3.3.3 in the place of Lemma 3.2.1, and Lemmas 3.3.5 and 3.3.4 in the place of
Lemma 3.2.2.

Theorem 3.3.4. Suppose that X,Y, Z are random variables taking values in
an aribtrary measurable space, and that the σ-algebras σ(X), σ(Y ), σ(Z) are
generated by countable, almost surely clopen bases I(X), I(Y ), I(Z). Then the
hypothesis of conditional dependence, {µ : X�

�|= µY |Z}, is monotonically verifi-
able.

Proof. We have demonstrated, in the proof of Theorem 3.2.7 that

{µ : X��|= µY |Z} =

=
⋃

A∈A(X),B∈A(Y ),C∈A(Z)

{
µ : µ(C) > 0,

µ(A ∩B ∩ C)

µ(C)
6= µ(A ∩ C)µ(B ∩ C)

µ(C)

}
.

By part (10) of Theorem 3.3.3, we have expressed the hypothesis of conditional
dependence as a countable union of monotonically verifiable hypotheses. There-
fore, by Lemma 3.3.5, it is monotonically verifiable.



3.3. MONOTONIC STATISTICAL VERIFICATION AND REFUTATION91

It poses no additional difficulty to prove analogous results for the setting of
causal graphical models. Suppose that M is a set of measures on a measurable
space (Ω,B). Let V be a fixed, finite set of random variables X1, X2, . . . , Xn

taking values in measurable spaces (S1,S1), . . . , (Sn,Sn). Assume that each Xi

is (B,Si) measurable. Let DAG be the set of all directed acyclic graphs on
variables in V. Let W ⊂M × DAG.

Theorem 3.3.5. Suppose that for Xi ∈ V, σ(Xi) is generated by a countable,
almost surely clopen basis I(Xi). Then, the following hypotheses are monoton-
ically refutable:

1. The true measure is Markov to G ∈ DAG;

2. The true measure is Markov to [G], for G ∈ DAG;

3. The true measure is Markov to some G ∈ DAG.

Proof of Theorem 3.3.5. The proof is identical to the proof of Theorem 3.2.10,
except we invoke Theorem 3.3.4 in the place of Theorem 3.2.7, and Lemma 3.3.5
in the place of Lemma 3.2.2.

Corollary 3.3.1. Suppose that the causal Markov and faithfulness assumptions
hold, and that for Xi ∈ V, σ(Xi) is generated by a countable, almost surely
clopen basis I(Xi). Then, the causal hypothesis

{(µ,G′) ∈W : [G′] � [G]}
is monotonically refutable.

Proof of Corollary 3.3.1. The proof is identical to the Proof of Corollary 3.2.2,
except we invoke Theorem 3.3.5 in the place of Theorem 3.2.9.

Theorem 3.3.6. Suppose that for Xi ∈ V, σ(Xi) is generated by a countable,
almost surely clopen basis I(Xi). Then, the following hypotheses are statistically
verifiable:

1. The true measure is faithful to G ∈ DAG;

2. The true measure is faithful to [G], for G ∈ DAG;

3. The true measure is faithful to some G ∈ DAG.

Proof of Theorem 3.3.6. The proof is identical to the proof of Theorem 3.2.10,
except we invoke Theorem 3.3.4 in the place of Theorem 3.2.7, and Lemma 3.3.5
in the place of Lemma 3.2.2.

Corollary 3.3.2. Suppose that the causal Markov and faithfulness assumptions
hold, and that for Xi ∈ V, σ(Xi) is generated by a countable, almost surely
clopen basis I(Xi). Then, the causal hypothesis

{(µ,G′) ∈W : [G] � [G′]}.
is monotonically verifiable.

Proof of Corollary 3.3.1. The proof is identical to the Proof of Corollary 3.2.3,
except we invoke Theorem 3.3.6 in the place of Theorem 3.2.10.
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3.4 Limiting Statistical Verification, Refutation,
and Decision

3.4.1 Defining the Success Concepts

We now weaken the preceding two criteria of statistical verifiability to arrive at
statistical notions of limiting verifiability. These notions are properly inductive,
because they drop any requirement of a short-run bound on the chance of error.

Say that a family (λn)n∈N of feasible methods is a limiting verifier in chance of
H ⊆W iff

1. µ ∈ H iff there is H ′ ⊆ H, s.t. lim
n→∞

µn[λ−1
n (H ′)] = 1;

2. µ /∈ H iff for all H ′ ⊆ H, lim
n→∞

µn[λ−1
n (H ′)] = 0.

Say that H ⊆W is limiting verifiable in chance iff there is a limiting verifier in
chance of H.

Say that a family (λn)n∈N of feasible methods is a limiting almost sure verifier
of H ⊆W iff

1. µ ∈ H iff there is H ′ ⊆ H, s.t. µ∞[lim inf
n→∞

λ−1
n (H ′)] = 1;

2. µ /∈ H iff for all H ′ ⊆ H, µ∞[lim sup
n→∞

λ−1
n (H ′)] = 0.

Say that H ⊆W is limiting a.s. verifiable iff there is a limiting a.s. verifier of H.

We say that an hypothesis H is limiting refutable in chance, or limiting a.s.
refutable, iff its complement is limiting verifiable in the appropriate sense.

A method is a limiting verifier of H if it converges to some “reason” H ′

entailing H, if H is true, and eventually eliminates every such reason if H is
false. In possibilities where H is false, a limiting verification method may have a
high chance of outputting some reason entailing H at every sample size. If that
is a shortcoming, it is remedied by the two-sided notion of statistical decision
in the limit.

Say that a family (λn)n∈N of feasible methods is a limiting decision procedure
in chance for H ⊆ W iff it is a limiting verifier in chance of H and Hc. Say
that H ⊆ W is limiting decidable in chance iff there exists a limiting decision
procedure in chance for H. Say that (λn)n∈N is a limiting almost sure decision
procedure for H iff it is a limiting almost sure verifier of H and Hc. Say that
H ⊆ W is limiting almost sure decidable iff there exists a limiting almost sure
decision procedure for H.
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3.4.2 Characterization Theorems

The central theorem of this section states that, for samples spaces with count-
able, almost surely clopen bases, limiting verifiability in chance and limiting
almost sure verifiability are equivalent to being a countable union of locally
closed sets in the weak topology.

Theorem 3.4.1. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for H ⊆W, the following are equivalent:

1. H is limiting verifiable in chance;

2. H is limiting almost surely verifiable;

3. H is a countable union of locally closed sets in the weak topology.

The characterization of statistical refutability follows immediately.

Theorem 3.4.2. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for H ⊆W, the following are equivalent:

1. H is limiting refutable in chance;

2. H is limiting almost surely refutable;

3. Hc is a countable union of locally closed sets in the weak topology.

We also characterize they hypotheses that are statistically decidable in the limit.

Theorem 3.4.3. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for H ⊆W, the following are equivalent:

1. H is limiting decidable in chance;

2. H is limiting almost surely decidable;

3. Both H and Hc are countable unions of locally closed sets in the weak
topology.

In light of Theorems 3.4.1, 3.4.2, 3.4.3 we will say that a hypothesis is simply
statistically verifiable/refutable/decidable in the limit when the precise sense of
limiting verifiability/refutability is not relevant.

The Proof of Theorem 3.4.1 proceeds as follows. It is immediate from the
definitions that 2 entails 1. It is also, easy to show that 1 entails 3.
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Proof of Theorem 3.4.1. 1 entails 3. Suppose that (λn)n∈N is a limiting verifier
in chance of H. Let α ∈ (0, 1). Let rng(λn) be the range of λn. For every
H ′ ∈ rng(λn), let:

trign(H ′) = {µ : µn[λ−1
n (H ′)] > α};

defn(H ′) = ∪m>n{µ : µm[λ−1
m (H ′)c] > 1− α}.

Lemma 3.1.4 and the feasibility of the λn entail that trign(H ′) and defn(H ′) are
both open in the weak topology. We claim that:

H =

∞⋃
n=1

⋃
H′∈rng(λn)

H′⊆H

trign(H ′) \ defn(H ′).

Observe that ν ∈ H iff there is H ′ ⊆ H and m ∈ N, such that for all n ≥
m, νn[λ−1

n (H ′)] > α iff ν ∈ trign(H ′) \ defn(H ′). Therefore, proposition H is a
countable union of locally closed sets.

To show that 3 entails 1, we prove Lemma 3.4.1. Say that a hypothesis is
verifutable iff it is the conjunction of an a.s. verifiable and an a.s. refutable
hypothesis. By Theorem 3.2.1, every locally closed set in the weak topology is
verifutable. The first part of Lemma 3.4.1 shows that every verifutable hypoth-
esis is limiting a.s. decidable, and therefore, limiting verifiable in chance. The
third part of Lemma 3.4.1 shows that countable unions of verifutable proposi-
tions are limiting a.s. verifiable, completing the proof.

Lemma 3.4.1.

1. Verifutable propositions are limiting almost surely decidable.

2. The limiting almost surely decidable propositions form an algebra.

3. If (Ai)i∈N is a collection of limiting almost surely decidable hypotheses,
then ∪∞i=1Ai is limiting almost surely verifiable.

Proof of Lemma 3.4.1. Proof of 1. Suppose that A = V ∩R, where V is almost
surely verifiable and R is almost surely refutable. We show that A is almost
surely decidable. Let (τn) be an almost sure α-verifier of V . Let (δn) be an
almost sure α-verifier of Rc. Define:

λn(~ω) =

{
A, if τn(~ω) = V and δn(~ω) = W,

Ac, otherwise.

We show that:

1. for µ ∈ A, µ∞[lim inf
n→∞

(λn)−1(A)] = 1,

2. for µ ∈ Ac, µ∞[lim inf
n→∞

(λn)−1(Ac)] = 1.
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Suppose that µ ∈ A. Then:

µ∞
[
lim inf
n→∞

(λn)−1(A)
]

=

= µ∞
[
lim inf
n→∞

(τn)−1(V ) ∩ (δn)−1(W )
]

= 1− µ∞
[
lim sup
n→∞

(τn)−1(W ) ∪ (δn)−1(Rc)

]
= 1− µ∞

[
lim sup
n→∞

(τn)−1(W ) ∪ lim sup
n→∞

(δn)−1(Rc)

]
≥ 1− µ∞

[
lim sup
n→∞

(τn)−1(W )

]
− µ∞

[
lim sup
n→∞

(δn)−1(Rc)

]
,

where the final inequality follows from the Union Bound. But since µ ∈ V ,
µ∞

[
lim supn→∞ (τn)−1(W )

]
= 0. Furthermore, since µ ∈ R,

∞∑
n=1

µ∞
[
(δn)−1(Rc)

]
≤ α.

Therefore, by the Borel-Cantelli Lemma, µ∞
[
lim supn→∞ (δn)−1(Rc)

]
= 0. So

µ∞
[
lim infn→∞(λn)−1(A)

]
= 1.

Now, suppose that µ ∈ Ac. Then either µ /∈ V , or µ ∈ Rc. In the first case:

µ∞
[
lim inf
n→∞

(λn)−1(Ac)
]

= µ∞
[
lim inf
n→∞

(τn)−1(W ) ∪ (δn)−1(Rc)
]

≥ µ∞
[
lim inf
n→∞

(τn)−1(W )
]
.

But µ∞
[
lim infn→∞(τn)−1(W )

]
= 1 by the Borel-Cantelli Lemma. In the

second case, µ ∈ Rc. Therefore:

µ∞
[
lim inf
n→∞

(λn)−1(Ac)
]

= µ∞
[
lim inf
n→∞

(τn)−1(W ) ∪ (δn)−1(Rc)
]

≥ µ∞
[
lim inf
n→∞

(δn)−1(Rc)
]

= 1.

Proof of 2. Clearly, the limiting almost surely decidable propostions are
closed under complements. We show that they are closed under finite unions
and intersections. Suppose that A′, A′′ are limiting almost surely decidable. Let
A = A′ ∪A′′. Let (λ′n) be an almost sure decision procedure for A′ and let (λ′′n)
be an almost sure decision procedure for A′′. Define:

λn(~ω) =

{
A, if λ′n(~ω) = A′ or λ′′n(~ω) = A′′,

Ac, otherwise.
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Suppose that µ ∈ A′ ∪A′′. Then, either µ ∈ A′ or µ ∈ A′′. In the first case:

µ∞
[
lim inf
n→∞

(λn)−1(A)
]

= µ∞
[
lim inf
n→∞

(λ′n)−1(A′) ∪ (λ′′n)−1(A′′)
]

≥ µ∞
[
lim inf
n→∞

(λ′n)−1(A′)
]

= 1.

In the second case:

µ∞
[
lim inf
n→∞

(λn)−1(A)
]

= µ∞
[
lim inf
n→∞

(λ′n)−1(A′) ∪ (λ′′n)−1(A′′)
]

≥ µ∞
[
lim inf
n→∞

(λ′′n)−1(A′′)
]

= 1.

Now, suppose that µ ∈ Ac. Then:

µ∞
[
lim inf
n→∞

(λn)−1(Ac)
]

=

= µ∞
[
lim inf
n→∞

(λ′n)−1(A′c) ∩ (λ′′n)−1(A′′c)
]

= 1− µ∞
[
lim sup
n→∞

(λ′n)−1(A′) ∪ (λ′′n)−1(A′′)

]
= 1− µ∞

[
lim sup
n→∞

(λ′n)−1(A′) ∪ lim sup
n→∞

(λ′′n)−1(A′′)

]
≥ 1− µ∞

[
lim sup
n→∞

(λ′n)−1(A′)

]
− µ∞

[
lim sup
n→∞

(λ′′n)−1(A′′)

]
= 1.

We now show that limiting almost surely decidable propositions are closed
under finite conjunctions. Let B = A′ ∩A′′. Define:

λn(~ω) =

{
B, if λ′n(~ω) = A′ and λ′′n(~ω) = A′′,

Bc, otherwise.

Suppose that µ ∈ B. Then:

µ∞
[
lim inf
n→∞

(λn)−1(B)
]

=

= µ∞
[
lim inf
n→∞

(λ′n)−1(A′) ∩ (λ′′n)−1(A′′)
]

= 1− µ∞
[
lim sup
n→∞

(λ′n)−1(A′c) ∪ (λ′′n)−1(A′′c)

]
= 1− µ∞

[
lim sup
n→∞

(λ′n)−1(A′c) ∪ lim sup
n→∞

(λ′′n)−1(A′′c)

]
≥ 1− µ∞

[
lim sup
n→∞

(λ′n)−1(A′c)

]
− µ∞

[
lim sup
n→∞

(λ′′n)−1(A′′c)

]
= 1.
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Now suppose that µ /∈ B. Suppose, without loss of generality, that µ /∈ A′.
Then:

µ∞
[
lim inf
n→∞

(λn)−1(Bc)
]

= µ∞
[
lim inf
n→∞

(λ′n)−1(A′c) ∪ (λ′′n)−1(A′′c)
]

≥ µ∞
[
lim inf
n→∞

(λ′n)−1(A′c)
]

= 1.

Proof of 3. Suppose that (Ai)i∈N are limiting almost surely decidable. Let
(λin) be a limiting decision procedure for Ai. Now, define: σn(~ω) = min{i : i ≤
n and λin(~ω) = Ai}. Let

λn(~ω) =

{
Aσ(~ω), if σ(~ω) <∞
W, otherwise.

Since the verdict of λn depends only on the output of finitely many λin, it is
feasible. Suppose that µ ∈ H. Let i = min{i : µ ∈ Ai}.

µ∞
[
lim inf
n→∞

(λin)−1(Ai)
]

= µ∞
[
lim inf
n→∞

∩j<i(λjn)−1(Ac
j) ∩ (λin)−1(Ai)

]
= 1− µ∞

[
lim sup
n→∞

∪j<i(λjn)−1(Aj) ∪ (λin)−1(Ac
i)

]
≥ 1−

∑
j<i

µ∞[lim sup
n→∞

(λjn)−1(Aj)]− µ∞[lim sup
n→∞

(λin)−1(Ac
i)].

But for j < i, µ∞[lim supn→∞(λjn)−1(Aj)] = 0. And furthermore,

µ∞[lim sup
n→∞

(λin)−1(Ac
i)] = 0.

Therefore µ∞
[
lim infn→∞(λin)−1(Ai)

]
= 1.

Now, suppose that µ /∈ H. Then:

µ∞
[
lim inf
n→∞

(λin)−1(Ai)
]

= µ∞
[
lim inf
n→∞

∩j<i(λjn)−1(Ac
j) ∩ (λin)−1(Ai)

]
≤ µ∞

[
lim inf
n→∞

(λin)−1(Ai)
]

= 0.

Proof of Theorem 3.4.3. It is immediate from the definitions that 2 implies 1.
If H is limiting decidable in chance, it is both limiting verifiable and refutable
in chance. Therefore, by Theorem 3.4.1, 1 implies 3. It remains to show that
3 implies 2. The proof is nearly identical to the proof of Theorem 3.4.1. By
assumption, there is a countable collection of locally closed Ai such that W =
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∪iAi and, for each i, Ai ⊆ H or Ai ⊆ Hc. Each Ai can be expressed as a
difference of open sets:

Ai = ext(frntAi) \ extAi.
For each Ai, let (τ in) be an a.s. α-verifier of ext(frntAi) and let (δin) be an

a.s. α-verifier of extAi. Define

λin(~ω) =

{
Ai, if τ in(~ω) = ext(frntAi) and δin(~ω) = W,

Ac
i , otherwise.

Then, as was shown in the proof of Theorem 3.4.1, we have that:

1. for µ ∈ Ai, µ∞[lim inf
n→∞

(λin)−1(Ai)] = 1,

2. for µ ∈ Ac
i , µ
∞[lim inf

n→∞
(λin)−1(Ac

i)] = 1.

Now, define: σn(~ω) = min{i : i ≤ n and λin(~ω) = Ai}. Let

λn(~ω) =

{
Aσ(~ω), if σ(~ω) <∞
W, otherwise.

Since the verdict of λn depends only on the output of finitely many λin, it is
feasible. Suppose that µ ∈W . Let i = min{i : µ ∈ Ai}.

µ∞
[
lim inf
n→∞

(λin)−1(Ai)
]

= µ∞
[
lim inf
n→∞

∩j<i(λjn)−1(Ac
j) ∩ (λin)−1(Ai)

]
= 1− µ∞

[
lim sup
n→∞

∪j<i(λjn)−1(Aj) ∪ (λin)−1(Ac
i)

]
≥ 1−

∑
j<i

µ∞[lim sup
n→∞

(λjn)−1(Aj)]− µ∞[lim sup
n→∞

(λin)−1(Ac
i)].

But for j < i, µ∞[lim supn→∞(λjn)−1(Aj)] = 0. And furthermore,

µ∞[lim sup
n→∞

(λin)−1(Ac
i)] = 0.

Therefore µ∞
[
lim infn→∞(λin)−1(Ai)

]
= 1.

3.4.3 Application: Causal Graphical Models

Returning to the setting of causal graphical models, suppose that M is a
set of measures on a measurable space (Ω,B). Let V be a fixed, finite set
of random variables X1, X2, . . . , Xn, . . . , taking values in measurable spaces
(S1,S1), . . . , (Sn,Sn), . . .. Assume that each Xi is (B,Si) measurable. Let
DAG be the set of all direted acyclic graphs on the fixed variable set V. Let
W ⊂M × ∪iDAG. Then, we have the following:
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Theorem 3.4.4. Suppose that for each Xi, σ(Xi) is generated by a countable,
almost surely clopen basis I(Xi). Then, the following hypotheses are verifutable,
and therefore, statistically decidable in the limit:

1. The true meaure is Markov and faithful to G ∈ DAG;

2. The true measure is Markov and faithful to [G] for G ∈ DAG.

Proof of Theorem 3.4.4. By Theorem 3.2.9, the hypothesis

{µ ∈W : µ is Markov to G}

is a.s. refutable. By Theorem 3.2.10, the hypothesis

{µ ∈W : µ is faithful to G}

is a.s. verifiable. Therefore, the hypothesis

{µ ∈W : µ is Markov to G} ∩ {µ ∈W : µ is faithful to G}

is verifutable. By Theorem 3.4.1, it is limiting a.s. decidable in the limit.

Corollary 3.4.1. Suppose that the causal Markov and faithfulness assumptions
hold, and that for each Xi, σ(Xi) is generated by a countable, almost surely
clopen basis I(Xi). Then, the causal hypothesis:

{(µ,G′) ∈W : [G′] = [G]}

is verifutable, and therefore statistically decidable in the limit.

Proof of Corollary 3.4.1. The hypothesis {(µ,G′) ∈W : [G′] = [G]} =

{(µ,G′) ∈W : [G′] � [G]} ∩ {(µ,G′) ∈W : [G′] � [G]}.

By Corollaries 3.2.2 and 3.2.3, it is verifutable, and therefore statistically decid-
able in the limit.

3.5 Problems and Solutions

Say that a statistical problem is a countable partition Q of the worlds in W
into a set of answers. For µ ∈ W , let Qµ denote the answer true in µ, i.e.
Qµ is the unique element of Q containing µ. Say that a family (λn)n∈N of
feasible methods is a solution in chance to the question Q iff for every µ ∈ W ,
limn→∞ µn[λ−1

n (Qµ)] = 1. Say that Q is solvable in chance iff there exists a
solution in chance to Q. A family (λn)n∈N of feasible methods is an almost sure
solution to Q iff for every µ ∈ W , µ∞[lim infn→∞ λ−1

n (Qµ)] = 1. Furthermore,
say that Q is almost surely solvable iff there exists an almost sure solution to Q.
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3.5.1 A Characterization of Solvable Problems

Theorem 3.5.1. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, the following are equivalent:

1. Q is solvable in chance;

2. Q is almost surely solvable;

3. The elements of Q are countable unions of locally closed sets in the weak
topology.18

The fact that 2 entails 1 follows directly from the definitions. It is also
straightforward to show that 1 entails 3. Suppose that (λn)n∈N is a solution
in chance to Q, and that A is an answer to Q. Then, (λn)n∈N is a limiting
verifier in chance of A. Therefore, by Theorem 3.4.1, A is a countable union
of locally closed sets in the weak topology. To show that 3 entails 1, we first
prove Lemma 3.5.1, which states that every questions consisting of limiting a.s.
decidable answers is a.s. solvable. If every answer A to Q is a countable union
of locally closed sets, then, since Q is countable, Ac must also be a countable
union of locally closed sets. Therefore, by Theorem 3.4.3, every answer to Q is
limiting a.s. decidable. Invoking Lemma 3.5.1 completes the proof.

Lemma 3.5.1. If every answer to question Q is limiting almost surely decidable,
then (W,Q) is almost surely solvable.

Proof of Lemma 3.5.1. Let A1, A2, . . . enumerate the elements of Q. For each
i ∈ N, let (λin) be an almost sure decision procedure for Ai. Define

σn(~ω) = min{i : i ≤ n and λin(~ω) = Ai}.

Let

λn(~ω) =

{
Aσn(~ω), if σ(~ω) <∞,
W, otherwise.

Since the verdict of λn depends on the verdict of only finitely many λi,jn , it is
feasible. Suppose that µ ∈ Ak. Then:

18A similar result is proven in [Dembo and Peres, 1994, Theorem 2] under different condi-
tions. Dembo and Peres do not require their methods to be feasible, so Theorem 3.4.1 does not
straightforwardly generalize their result. It is not difficult to reprove Theorem 3.4.1 without
that requirement to obtain a generalization of the result in Dembo and Peres [1994]. But
since requirement of feasibility has a strong independent motivation, I do not take this to be
a shortcoming vis-a-vis the older result.
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µ∞
[
lim inf
n→∞

λ−1
n (Ak)

]
=

= µ∞

[
lim inf
n→∞

⋂
i<k

(
λin
)−1

(Ac
i) ∩

(
λkn
)−1

(Ak)

]

= 1− µ∞
[

lim sup
n→∞

⋃
i<k

(
λin
)−1

(Ai) ∪
(
λkn
)−1

(Ac
k)

]

= 1− µ∞
[⋃
i<k

lim sup
n→∞

(
λin
)−1

(Ai) ∪ lim sup
n→∞

(
λkn
)−1

(Ac
k)

]

≥ 1−
∑
i<k

µ∞
[
lim sup
n→∞

(
λin
)−1

(Ai)

]
− µ∞

[
lim sup
n→∞

(
λkn
)−1

(Ac
k)

]
.

Since each (λin)n∈N is a limiting a.s. decision procedure for Ai, and µ /∈ ∪i<kAi,
it follows that µ∞

[
lim supn→∞(λin)−1(Ai)

]
= 0 for i < k. Therefore,

µ∞
[
lim inf
n→∞

λ−1
n (Ai)

]
≥ 1− µ∞

[
lim sup
n→∞

(
λkn
)−1

(Ac
k)

]
.

But since µ ∈ Ak:

µ∞
[
lim sup
n→∞

(
λkn
)−1

(Ac
k)

]
= 0,

so µ∞
[
lim infn→∞ λ−1

n (Ak)
]

= 1, as required.

3.5.2 Solving the Markov Class Problem for Causal Graphs

Spirtes et al. [2000] describe several algorithms for discovering the Markov equiv-
alence class of the true causal graph. These algorithms are provably correct
given reliable procedures for making the requisite statistical decisions about
conditional indendence. Spirtes et al. [2000] cite appropriate tests for the linear
Gaussian case, and the discrete case. One may still wonder, however, whether
appropriate procedures exist in general. In this section, we leverage the results
of the previous section to show that under a weak condition, there exists a
pointwise consistent method for discovering the true Markov equivalence class.
These results hold for discrete variables, variables with density functions, and
any mixture of the two.

Suppose that M is a set of measures on a measurable space (Ω,B). Let V be a
fixed, finite set of random variables X1, X2, . . . , Xn taking values in measurable
spaces (S1,S1), . . . , (Sn,Sn). Assume that each Xi is (B,Si) measurable. Let
DAG be the set of all direted acyclic graphs on the fixed variable set V. Let
W ⊂M × DAG.
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By Theorem 3.4.4, the hypotheses

MarkovClass = {{µ ∈M : µ is Markov and faithful to [G]} : G ∈ DAG},

are disjoint and verifutable. However, these hypotheses do not necessarily ex-
haust the measures in M , since some measures may fail to be Markov and
faithful to any G ∈ DAG. However, since ∪MarkovClass, is a finite union of ver-
ifutable hypotheses, both ∪MarkovClass and the catchall hypothesis Catchall =
W \∪MarkovClass are limiting a.s. decidable by Lemma 3.4.1. Therefore, letting
Q = MarkovClass ∪ Catchall, we have that each answer to Q is limiting a.s. de-
cidable and therefore, by Lemma 3.5.1, (M,Q) is a solvable statistical problem.
We have proven the following:

Theorem 3.5.2. Suppose that for each Xi, σ(Xi) is generated by a countable,
almost surely clopen basis I(Xi). Then, every answer to the statistical problem
(M,Q), where Q = MarkovClass∪Catchall, is decidable in the limit, and (M,Q)
is solvable in the limit.

The causal Markov class question is given by:

CausalMarkovClass = {{(µ,G′) ∈W : [G′] = [G]} : G ∈ DAG}.

Under the casual Markov and faithfulness assumption, each element of CausalMarkov-
Class is decidable in the limit by Corollary 3.4.1. Therefore, by Lemma 3.5.1, it
is solvable in the limit. We have proven the following:

Theorem 3.5.3. Suppose that the causal Markov and faithfulness assumptions
hold, and that for each Xi, σ(Xi) is generated by a countable, almost surely
clopen basis I(Xi). Then, every answer to the causal inference problem, (W,Q),
where Q = CausalMarkovClass, is decidable in the limit, and therefore (W,Q) is
solvable in the limit.

3.6 Progress, Simplicity and Ockham’s Razor

3.6.1 Simplicity

Popper [1959] proposed that A is as simple as B, which we abbreviate with
A � B, iff A is at least as falsifiable as B, i.e. if every verifiable proposition
inconsistent with B is also inconsistent A. In the equivalent, contrapositive
formulation: A � B iff any verifiable proposition consistent with A is consistent
with B. Popper’s proposal was widely criticized (see e.g. Fitzpatrick [2013b])
for being inapplicable in statistical settings. The typical objection was that, on
his definition, all statistical hypotheses are equally simple since, for example,
every real-valued random sample is logically consistent with any generating
normal distribution. That difficulty is resolved when one replaces propositional
falsification with statistical falsification.
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Theorem 3.6.1. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then, for A,B ⊆W, the following are equivalent:

1. A ⊆ clB; 19

2. Every statistically verifiable proposition inconsistent with B is inconsistent
with A;

3. Every statistically verifiable proposition consistent with A is consistent
with B.

Proof of Theorem 3.6.1. 2 and 3 are equivalent by contraposition. By Theorem
3.2.1, the statistically verifiable propositions are exactly the open sets in the
weak topology. To see that 1 and 3 are equivalent, note that A ⊆ cl(B) iff every
open set compatible with A is compatible with B iff every statistically verifiable
proposition compatible with A is compatible with B.

As we discussed in Section 2.5, Popper’s definition has the unfortunate fea-
ture of confounding relations of logical entailment with relations of empirical
underdetermination. Recall that, since A ⊆ clB whenever A entails B, any hy-
pothesis is simpler than its logical consequences, and W , the trivial hypothesis,
is maximally complex. That problem is eliminated if we restrict the simplic-
ity relation to competing hypothesis and set A � B iff A ⊆ frntB = clB \ B.
However, on that definition, simplicity relations can be obscured by disjoining
irrelevant possibilities, e.g. if A � B, and µ /∈ frntB, then A ∪ {µ} � B. Those
sorts of considerations (see Section 2.5 for more discussion) suggest the follow-
ing defintion: say that A is as simple as B, written A / B iff A ∩ frntr(B) 6= ∅,
which says that there is µ ∈ A, where B is false, but all statistically verifiable
propositions true in µ are consistent with B. Say that A is simplest iff there is no
B such that B / A. Then, maximal simplicity has the following correspondence
with statistical refutability.

Theorem 3.6.2. Suppose (1) that I is a countable base (2) that W is a set of
Borel measures on (Ω, I), and (3) that I is almost surely clopen in every µ ∈W.
Then for A ⊆W, A is simplest iff A is statistically refutable.

Proof. By Lemma 2.1.1, A is closed iff frntA = ∅, iff there is no B / A. By
Theorem 3.2.2, A is closed iff A is statistically refutable.

When A and B are competing hypotheses, the simplicity relation has intu-
itive consequences for hypothesis testing. Suppose that A / B. Then there is
µ ∈ A∩frntB. Let ψ : Ω→ {W,Ac} be a feasible test of A. By assumption, there
is a sequence (µn) lying in B such that µn[ψ−1(Ac)]→ µ[ψ−1(Ac)]. Therefore,
infµ∈B µ[ψ−1(Ac)] ≤ supµ∈A µ[ψ−1(Ac)], which is to say that for any test of A,
the worst-case power in B does not exceed the significance level.

19All topological operators are with respect to the weak topology.
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Simplicity in Linear Models

In discussions of linear regression modeling, one often hears that models with
“fewer” predictors are simpler than models with more. In this section we show
that the simplicity relation defined in the previous section agrees with intuition
in a precise sense.

Let X1, X2, . . . Xk be a set of observable random variables. Let ε be an unob-
served noise term. Let X0 = 1. The set of worlds W is the set of random vectors
(Y,X1, X2, . . . , Xk, ε), where

Y =

k∑
i=0

βiXi + ε.

Each world may be expressed as a product of matricesBX whereX = (1, X1, X2, . . . , Xk, ε)
T ,

and B is the equal to the identity matrix, except in the first row. For example,
if k = 2, and Y = β0 + β1X1 + β2X2 + ε, then:

(Y,X1, X2, ε) =


β0 β1 β2 1
0 1 0 0
0 0 1 0
0 0 0 1




1
X1

X2

ε


Of course, some of the βi may be equal to zero. The problem of finding
out exactly which βi are zero is called the problem of subset selection. If
I ⊆ {0, 1, . . . , k}, let WI be the set of worlds (Y,X1, . . . , Xk, ε) where Y =∑
i∈I βiXi + ε, and each βi is non-zero.

We show that WI / WJ , if I ⊂ J , i.e. that models with a strict superset of
predictors are more complex. Let BX ∈ WI . The sequence of matrices {BN}
is defined by:

BNi,j =

{
1
N , if i = 1, and j ∈ J \ I,
Bi,j , otherwise.

By construction, BX ∈WI and each BNX ∈WJ . Since the BN are converging
in Euclidean norm to B, it follows, a fortiori, that the BN are converging to B
in probability. By Slutsky’s theorem (Theorem 3.1.5), BNX ⇒ BX. Therefore
BX ∈ frntWJ . Since BX was arbitrary, WI ⊆ frntWJ , and WI / WJ .

Simplicity in Linear Causal Models

A linear causal model is a random vector Z = (X1, X2, . . . , Xk, e1, e2, . . . , ek)
such that the following hold:

1. There is an ordering k(i) of the observable variables Xi such that each
variable is a linear function of variables earlier in the order, plus an un-
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observed noise term ei. That is:

Xi(ω) =
∑

k(j)<k(i)

bijXj(ω) + ei(ω).

2. The noise terms e1, . . . , ek are mutually independent.

Let LIN be the set of all linear causal models (X1, . . . , Xk, e1, . . . , ek) defined
on a common space (S,S). Let DAG be the set of all directed acyclic graphs
on the set of indices {1, . . . , k}. Each linear causal model corresponds to a
DAG in a natural way: the directed graph G of a linear causal model Z =
(X1, . . . , Xk, e1, . . . , ek) has a directed edge from i to j iff bij 6= 0. If G is the
DAG for a linear model X, then L(Z) is Markov for G [Spirtes, 1995, Theorem
1]. Let W be the set of all pairs (Z,G) where Z ∈ LIN,G ∈ DAG and G is the
canonical DAG for Z. If G ∈ DAG, let WG be the set {(Z,G′) ∈ W : G′ = G}.
We may think of a DAG G as a set of pairs {(i, j) : i is a direct cause of j in G}.
If G′ has a strict subset of the edges of G′′, write G′ ⊂ G′′.

It is natural to think that if G′ ⊂ G′′, then WG′ is simpler than WG′′ . We show
that the simplicity relation defined in Section 3.6.1 agrees with this fundamental
intuition. Let (Z,G′) ∈WG′ . For each linear causal model, the set of observable
variables X = (X1, . . . , Xk) can be expressed as the system of equations:

X = BX + e,

where e is the vector of noise terms (e1, . . . , ek), and B is the matrix of coeffi-
cients bij . The matrix B can be permuted to a strictly lower triangular matrix
(a matrix with zeros on and above the diagonal) if the true causal order is
known. Shimizu et al. [2006] observe that, solving for X, one obtains

X = (I −B)−1e.

Let

BNi,j =

{
1
N , if (j, i) ∈ G′′ \ G′,
Bi,j , otherwise.

Let Xn = (I − BN )−1e and Zn = (Xn, e). By construction, BNij 6= 0 iff
(j, i) ∈ G′′. By a standard result in graph theory, since G′′ is a DAG, there is
an ordering of its vertices k(i) such that if (j, i) ∈ G′′, k(j) < k(i). Therefore, if
bNij 6= 0, then k(j) < k(i), as required to satisfy condition 1. Furthermore, since
the distribution of the errors in e is unchanged, they are mutually independent,
satisfying the second condition. Therefore, the Zn are in LIN, and (Zn,G′′) ∈W.

By construction, the {BN} are converging to B in the Euclidean norm. By
the continuous mapping theorem, it follows that (I − BN )−1 → (I − B)−1. By
Slutsky’s Theorem (Theorem 3.1.5), it follows that Xn ⇒ X. If we endow the
set W with the topology inherited from the weak topology on the observable
variables, it follows that WG′ ⊆ frntWG′′ , and therefore WG′ / WG′′ .
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3.6.2 Progressive Solutions

A perennial hope of the philosophy of science is to give reason to believe that
science makes progress. In the context of a particular empirical question, that
hope could be vindicated by exhibiting methods whose objective chance of pro-
ducing the true answer increases monotonically with sample size. In light of
Lemma 3.3.1, we know that is not typically possible. But if that is infeasible,
one could at least show that there exist solutions where the chance of produc-
ing the true answer never decreases by more than α, where α is small. Call a
method satisfying that latter property α-progressive. Theorem 3.6.3 shows that
for a wide class of problems, there exist α-progressive methods for every α > 0.

Say that a solution in chance {λn}n∈N is α-progressive iff for all n1 < n2,

α-Prog. µn2 [λ−1
n2

(Qµ)] + α > µn1 [λ−1
n1

(Qµ)].

First, we prove a lemma:

Lemma 3.6.1. Suppose that α and a1, . . . , an are in [0, 1], and that ai >
α
2i .

Then
n∏
i=1

(ai −
α

2i
) ≥

n∏
i=1

ai −
n∑
i=1

α

2i
.

Proof of Lemma 3.6.1. By induction on n. The base case is trivial. For the
inductive step, note that:

n+1∏
i=1

(ai −
α

2i
) = (an+1 −

α

2n+1
) ·

n∏
i=1

(ai −
α

2i
)

= an+1 ·
n∏
i=1

(ai −
α

2i
)− α

2n+1
·
n∏
i=1

(ai −
α

2i
)

≥ an+1 ·
n∏
i=1

(ai −
α

2i
)− α

2n+1

≥ an+1 ·
(

n∏
i=1

ai −
n∑
i=1

α

2i

)
− α

2n+1

=

n+1∏
i=1

ai − an+1 ·
n∑
i=1

α

2i
− α

2n+1

≥
n+1∏
i=1

ai −
n+1∑
i=1

α

2i
,

where we have used the inductive hypothesis to get to the fourth line.

Theorem 3.6.3. Suppose (1) that I is a countable base (2) that W is a set
of Borel measures on (Ω, I), and (3) that I is almost surely clopen in every
µ ∈W. Suppose that Q is a partition of W, and that there exists A1, A2, . . . , an
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enumeration of Q agreeing with the simplicity relation /, i.e. an enumeration
such that if j < i then Ai �/ Aj.

20 Then there exists an α-progressive solution
to Q, for every α > 0.

Proof of Theorem 3.6.3. We show that under the conditions in the antecedent,
and for all i, ∪j≤iAj is monotonically refutable. The result follows by Lemma
3.6.2. By Theorem 3.3.2, it is sufficient to show that ∪j≤iAj is closed in the
weak topology on W . Suppose for a contradiction that ∪j≤iAj is not closed.
Then there is some µ ∈ Ak such that k > i and µ ∈ cl(∪j≤iAj). But since the
closure of a finite union is the union of the closures, there must be j < k such
that µ ∈ clAj . But then Ak ∩ frntAj 6= ∅. Contradiction.

Lemma 3.6.2. Suppose that there exists A1, A2, . . . , an enumeration of Q
such that for all i, ∪j≤iAj is monotonically refutable. Then there exists an
α-progressive solution to Q, for every α > 0.

Proof of Lemma 3.6.2. Suppose that there exists A1, A2, . . . , an enumeration of
Q such that for all i, ∪j≤iAj is monotonically refutable. By Theorem 3.3.2, there
exist (λ1

n), (λ2
n), . . . ,mutually independent, α

2i -monotonic refutation methods for
∪j≤1Aj ,∪j≤2Aj ,∪j≤3Aj . . . . Let σn(~ω) = min{i ≤ n : λin(~ω) = W}. Let

λn(~ω) =

{
Aσn(~ω), if σ(~ω) <∞
W, otherwise.

First we show that (λn) is a solution in chance. Suppose that µ ∈ Ai. Then,
by assumption, µ /∈ ∪k≤jAk for j < i. Therefore, since the (λin) are mutually
independent,

lim
n→∞

µn[λ−1
n (Ai)] = lim

n→∞
µn[∩j<i(λjn)−1(∩k≤jAc

k) ∩ (λin)−1(W )]

= lim
n→∞

µn[(λin)−1(W )] ·
∏
j<i

µn[(λjn)−1(∩k≤jAc
k)]

= 1.

It remains to show that for n1 < n2,

µn2 [λ−1
n2

(Ai)] > µn1 [λ−1
n1

(Ai)]− α.

Note that if µn1 [(λjn1
)−1(∩k≤jAc

k)] ≤ α
2j for any j < i, then µn1 [λ−1

n1
(Ai)] < α,

and we are done. So suppose that µn1 [(λjn1
)−1(∩k≤jAc

k)] > α
2j for all j < i.

20A sufficient condition for the existence of such an enumaration is that the question is a
stratification.
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Since the (λin) are mutually independent, and α/2i-monotonic:

µn2 [λ−1
n2

(Ai)] = µn2
[
∩j<i(λjn2

)−1(∩k≤jAc
k) ∩ (λin2

)−1(W )
]

= µn2 [(λin2
)−1(W )] ·

∏
j<i

µn2 [(λjn2
)−1(∩k≤jAc

k)]

≥ µn2 [(λin2
)−1(W )] ·

∏
j<i

(
µn1 [(λjn1

)−1(∩k≤jAc
k)]− α

2j

)
Since µ ∈ Ai,

µn2 [(λin2
)−1(W ) ≥ 1− α

2i
≥ µn1 [(λin1

)−1(W )]− α

2i
.

Therefore,

µn2 [λ−1
n2

(Ai)] ≥
(
µn1 [(λin1

)−1(W )]− α

2i

)
·
∏
j<i

(
µn1 [(λjn1

)−1(∩k≤jAc
k)]− α

2j

)
By Lemma 3.6.1:

µn2 [λ−1
n2

(Ai)] ≥ µn1 [(λin1
)−1(W )] ·

∏
j<i

µn1 [(λjn1
)−1(∩k≤jAc

k)]−
i∑

j=1

α

2j

= µn1 [λ−1
n1

(Ai)]−
i∑

j=1

α

2j

≥ µn1 [λ−1
n1

(Ai)]− α.

3.6.3 Progress and Ockham’s Razor

In this section we demonstrate that every α-progressive method satisfies a prob-
abilistic version of Ockham’s razor. If progressiveness sounds like a weak prop-
erty, demonstrating that Ockham’s razor is a necessary condition of that weak
condition is a very strong justification — if it is necessary for that very weak
success notion, it is also necessary for every stronger one.

Say that a statistical method {λn}n∈N is α-Ockham iff the chance that it con-
jectures an answer more complex than the truth is bounded by α, i.e.:

α-Ockham. If A ∈ Q and µ ∈ frntA, then µn[λ−1
n (A)] ≤ α.

Theorem 3.6.4. Every α-progressive solution is α-Ockham.

Proof. Suppose that µ ∈ frntA, but µn1 [λ−1
n1

(A)] ≥ α + ε > α. Since {λn}n∈N
is a solution, there is n2 such that µn2 [λ−1

n2
(Qµ)] > 1 − ε. Since {λn}n∈N is

feasible,

E := {ν : νn1 [λ−1
n1

(A)] > α+ ε} ∩ {ν : νn2 [λ−1
n2

(Qµ)] > 1− ε}
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is open in the weak topology. Furthermore, µ ∈ E. Since µ ∈ frntA, there is
ν ∈ E ∩ A. Therefore νn1 [λ−1

n1
(Qν)] > α + ε and νn2 [λ−1

n2
(Qν)] < ε. It follows

that νn1
[λ−1
n1

(Qν)]− νn2
[λ−1
n2

(Qν)] > α.

3.6.4 A Progressive Solution to the Markov Class Prob-
lem

Constraint-based methods for solving the causal Markov class problem typically
start out by conjecturing sparse graphs with few causal relations, and are driven
to introduce new causal relationships only when the relevant conditional inde-
pendencies (and thereby d-separations) are statistically refuted. Algorithms
such as SGS and PC often proceed by nesting sequences of conditional inde-
pendence tests. Although several such methods are known to converge to the
true Markov equivalence class in the limit of infinite data, there are infinitely
many others strategies that would have the same limiting performance, but
make drastically different decisions on finite samples. Some of these alternative
methods may even reverse the usual preference for sparse graphs for arbitrarily
many sample sizes. What could justify these seemingly reasonable procedures?
Spirtes et al. [2000] note that none of the usual comforts of hypothesis testing
are present:

Most of the algorithms we have described require statistical decisions
which, as we have just noted, can be implemented in the form of
hypothesis tests. But the parameters of the tests cannot be given
their ordinary significance. The usual comforts of a statistical test
are the significance level . . . and the power against an alternative . . . .
Except in very large samples, neither the significance level nor the
power of tests used within the search algorithms to decide statistical
dependence measures the long run frequency of anything interesting
about the search. What does?

Spirtes et al. [2000] proceed to list several error probabilities that one might
want to know, but despair of obtaining any analytical answers to these ques-
tions. In this section, I suggest that it is possible to give an interpretation to
the error probabilities of the nested hypothesis tests, although it is not the usual
one. The results of the previous section show that if one carefully manages the
error probabilities of nested and, crucially, monotonic, hypothesis tests, one can
ensure that the search procedure is α-progressive, for any α > 0. Moreover, any
progressive solution must, by Theorem 3.6.4, obey a probabilistic Ockham’s ra-
zor. In this section we demonstrate how to apply these results to the setting of
causal search.

Suppose that M is a set of measures on a measurable space (Ω,B). Let V
be a fixed, finite set of random variables X1, X2, . . . , Xn taking values in mea-
surable spaces (S1,S1), . . . , (Sn,Sn). Assume that each Xi is (B,Si) measur-
able. Let DAG be the set of all direted acyclic graphs on the fixed variable
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set V. Let W ⊂ M × DAG. Recall that the causal Markov class problem
is (W,CausalMarkovClass), where CausalMarkovClass = {{(µ,G′) ∈ W : [G′] =
[G]} : G ∈ DAG}.

Theorem 3.6.5. Suppose that the causal Markov and faithfulness assumptions
hold, and that for Xi ∈ V, σ(Xi) is generated by a countable, almost surely
clopen basis I(Xi). Then, the causal inference problem, (W,CausalMarkovClass)
has an α-progressive solution, for every α > 0.

Proof of Theorem 3.6.5. By the order-extension principle, there is a total order
�∗ compatible with the I-map partial order on causal graphs. Let [G1], [G2], . . .
be an enumeration of the hypotheses in CausalMarkovClass such that i ≤ j iff
[Gi] �∗ [Gj ]. To show that (W,MarkovClass) has an α-progressive solution for
every α > 0, it suffices, by Lemma 3.6.2, to show that

⋃
j≤i{(µ,G) : [G] = [Gj ]}

is monotonically refutable. We argue that⋃
j≤i

{(µ,G) : [G] = [Gj ]} =
⋃
j≤i

{(µ,G) : [G] � [Gj ]}.

By Corollary 3.3.1, the rhs is a finite union of monotonically refutable hypothe-
ses. By Lemma 3.3.5, the rhs is monotonically refutable. Suppose that (µ,G)
is an element of the lhs. Then there is j ≤ i such that [G] = [Gj ]. A fortiori,
[G] � [Gj ]. Therefore, (µ,G) is an element of the rhs. To show that the rhs is
contained in the lhs, suppose that (µ,G) is not an element of the lhs. Then,
[G] �∗ [Gi]. Suppose for a contradiction that (µ,G) is an element of the rhs.
Then [G] � [Gj ] for some j ≤ i. But then [G] �∗ [Gj ] �∗ [Gi]. By transitivity,
[G] �∗ [Gi]. Contradiction.

3.7 Related Work

Chapter 2 recapitulates foundational results in topological learning theory. Re-
sults stated in that section appear previously in de Brecht and Yamamoto [2009],
Genin and Kelly [2015], Kelly et al. [2016], Genin and Kelly [2018], and Baltag
et al. [2016]. All novel results are contained in Chapter 3, although some have
already been published in Genin and Kelly [2017]. In statistical terminology,
Theorem 3.2.1 provides necessary and sufficient conditions for the existence
of a Chernoff consistent test. Although there is extensive statistical work on
pointwise consistent hypothesis testing, I am unaware of any topological result
analogous to Theorem 3.2.1. The closest work I am aware of is Ryabko [2011],
where a topological characterization is given for consistent hypothesis testing
of ergodic processes with samples from a discrete, finite alphabet. That result
is incomparable with my own, because, although my work is done in the i.i.d
setting, I allow samples to take values in an arbitrary, second-countable space.
Furthermore, the topology employed in Ryabko [2011] is not the weak topology,
but the topology of distributional distance. The existence of uniformly consis-
tent tests is investigated topologically in Ermakov [2013], where some sufficient
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conditions are given. Limiting statistical solvability, or discernability, as it is
known in the literature, has been investigated topologically in Dembo and Peres
[1994] and Kulkarni and Zeitouni [1995]. The results of Dembo and Peres [1994]
are generalized to ergodic processes in Nobel [2006]. Although the setting is
slightly different, Theorem 3.5.1 gives a simpler back-and-forth condition than
the one given in Dembo and Peres [1994] and is arrived at more systematically,
by building on the fundamental Theorem 3.2.1. The weak topology is used in
Dembo and Peres [1994], but Theorem 3.2.1 shows that the weak topology is the
unique topology for which the open sets are exactly the statistically verifiable
propositions. My result shows, therefore, that the weak topology is more than
just a convenient technical device. The results on conditional independence test-
ing are, so far as I know, also new.21 Theorem 3.2.7 is a theoretical improvement
on previous non-parametric results given by Gretton and Györfi [2010], Györfi
and Walk [2012] which, while guaranteeing the existence of tests that are consis-
tent in the limit of infinite data, do not guarantee finite-sample bounds on the
chance of error. Theorem 3.5.3 is anticipated in Spirtes et al. [2000], although
it is something of an improvement because it does not rely on the existence
of “plug in” tests for conditional independence. So far as I know, all results
pertaining to monotonic tests and progressive methods, although inspired by
Chernick and Liu [2002], are without precedent in the existing literature. I have
in mind especially Theorems 3.3.1, 3.6.3, 3.6.4 and 3.6.5, which I take to be
substantive.

21The simplicity of the methods employed suggests to me that I must be missing something.
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