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ABSTRACT. Is there a tracking account on which diligent hypothesis testing generates
knowledge? What about belief in frequentist confidence intervals? If there is something
right about tracking, it ought to be able to explain how these workhorse methods of
scientific inquiry generate knowledge. If it cannot, we must either abandon tracking
or embrace scientific skepticism. This paper examines what kind of tracking conditions
could make sense of our statistical practice.

SENSITIVITY AND ADHERENCE

Nozick (1981) analyzes the knowledge relation as follows:

S knows that p if

(1) S believes that p;

(2) pis true;

(3) If p were not the case, S would not believe that p (Sensitivity);
(4) If p were the case, S would believe that p (Adherence).

If we are interested in scientific knowledge, it is natural to draw the connection with
Neyman-Pearson theory. In classical frequentist hypothesis testing, we have a parametric
model
P ={p(x;0) : 0 € O}

where © C R and p is a probability density function from some parametric family. We
can think of parameters propositionally: a single # € © individuates a possible world and
Oy C O picks out a set of possible worlds. Given two disjoint propositions ©y and ©; we
can ask whether the true world 6 is a member of Oy or ©;. In the former case we say
that the null hypothesis is true, in the latter that the alternative hypothesis is true. A
statistical test is an epistemic decision procedure with two possible outcomes: either you
retain the null hypothesis or you reject it in favor of the alternative. There are two kinds
of errors that a statistician faced with such a decision problem can make. Either she can
falsely reject the null (Type I) or she can falsely retain the null (Type II).

0 € 0O 0 e 6,
Retain © No error Type II error
(Believe ©y) (false negative)
Reject ©g Type I error No error
(Believe ©,) | (false positive)
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Belief in the null hypothesis is not usually meant to be taken very seriously. Belief in
the alternative is meant to be a momentous epistemic decision. This is a reflection of an
asymmetry in the utilities usually associated with the respective outcomes. Belief in the
null hypothesis usually recommends no action, whereas rejection counsels some poten-
tially dangerous decision. A common motivating example comes from the pharmaceutical
setting. If we are researchers at BigPharma Co. our null might be that our new medica-
tion is no more effective than placebo. If we retain, we have wasted R&D money. If we
reject, we prescribe a potentially dangerous new medication to our patients. Clearly, it
is to be hoped that rejection of the null tends to generate knowledge of the alternative.
The errors associated with our epistemic decision immediately suggest a statistical gloss
of Nozick’s tracking conditionals. Say that S knows that O if

(1) S believes Oy;

(2) 6 € B4;

(3) If ©; were false, S would not believe ©; (S avoids Type I errors);
(4) If ©; were true, S would believe ©; (S avoids Type II errors).

A well-designed test of a statistical hypothesis is expressly intended to minimize errors of
Type I and II, so it seems as if Nozick’s tracking conditionals — suitably paraphrased —
promise an account of how tests of statistical hypotheses generate knowledge. The goal
of this paper is to examine to what extent this promise is fulfilled.

TRACKING WITH PROBABILITIES

The goal of Neyman-Pearson theory is to design tests with reasonable probability of avoid-
ing errors of Type I and II. Of course, Nozick’s tracking conditionals are articulated in
terms of counterfactuals, so we must somehow translate the one kind of talk into the
other. Roush (2005) suggests a straightforward importation of the tracking conditionals
into probabilistic language. Say that S knows that p if

S believes that p;

p is true;

P(S does not believe that p | p is not the case) > 1-a (Sensitivity);
P(S believes that p | p is the case) > 1-a (Adherence).

(1)
(2)
(3)
(4)

Roush argues that her account has most of the advantages of Nozick’s, without the ar-
bitrary jury-rigging of similarity relations between possible worlds. Why worry about
possible-world semantics if you can get by with conditional probabilities? The account is
attractive, but several technical problems quickly arise. Probability zero events abound
in statistics. Suppose I have observed a one-point sample X; ~ F where F' is some con-
tinuous distribution and that x; # 0. Presumably, I know that z; is not equal to zero
without doing much more than examining the sample. In order to evaluate the sensitivity
condition, I need to investigate P(I do not believe that z; # 0|z; = 0). But since F is a
continuous distribution, P(x; = 0) = 0 so the conditional probability in the sensitivity
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condition is undefined. Surely a tracking account ought to be able to handle such a trivial
case.

We ought not make too much of this last criticism. Conditioning on probability zero
events is a problem for everyone — not just Roush — and there are ways it can be reme-
died. More immediately problematic are events which have no probability. Suppose we
have observed a sample z1, ..., zx drawn from F ~ N (i, 1) where p is unknown. We have
tested the null hypothesis Hy : © = 0 against the alternative H; : u # 0 and rejected.
Suppose furthermore that we have designed our test so that the probability of false re-
jection is very low. We would like to say that that we know H;, but in order to evaluate
the sensitivity condition we need to compute P(retaining Hy | 4 = 0). But there is no
frequentist probability associated with the event “u = 0”. Perhaps Roush has in mind
some sort of Bayesian quantity, but it does not seem that a tracking semantics could be
easily represented in a Bayesian framework. After all, epistemic agents are meant to be
tracking the truth of a hypothesis, not their own Bayesian posterior probabilities. Rig-
ging up some way to condition on the event “ = 0”7 does violence to the realist intuition
that statistical parameters are simple “out there” and are not the product of a stochastic
process. Neyman-Pearson theory asks us to consider what the probability disposition of
experiments would be like were the world to be governed by the parameter 6. The theory
is expressed explicitly in terms of possible worlds and a tracking semantics for frequen-
tist statistics ought to respect the standard usage. Conditional probability is simply not
enough for a frequentist semantics.

We turn now to defining sensitivity and adherence for beliefs governed by a statistical
test. As before let
P={P:0c06 CR}
be a family of probability measures having densitites p(z,6). Suppose that we have
independent and identically distributed observations (X, ..., X,,) distributed according to
P. Let Og, © be disjoint, exhaustive subsets of ©. A test of Oy against ©; for the sample
size n is a mapping
U, X" — {0,1}
where we use 1 to indicate rejection of ©g. Define the power function by
B0, V) = By(V,(X") = 1)
for § € ©. Finally, say that U, is level « if

sup 5(0, ¥y) < o
0€0q
and that W,, has power [ if

1 >
eleneflﬁ(e’ v,) > 5.

The Neyman-Pearson testing procedure is to fix a level a € [0, 1] and then maximize ((6)
for 6 € © subject to 5(0) < a for § € ©y. Now we can say that S is a-sensitive to ©; at
sample size n according to W, if

(1) S believes Oy if U,,(X") = 0;

(2) ¥, is level a.
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FIGURE 1. Plot of B(u)

And S is B-adherent to ©; at sample size n according to ¥, if

(1) S believes O, if ¥, (X") =1

(2) W,, has power f.
As desired, if « is small, then it is probable that S does not believe ©, if it is false; and
if B is large, it is probable that S believes ©, if it is true. We can now straightforwardly
translate Nozick’s tracking conditions. Say that S knows that ©; according to test ¥,
and the sample z" if

) Un(z") = 1;

) 0 € Oy;

) S is .05-sensitive to ©; at sample size n according to V,;
) S is .95-adherent to ©; at sample size n according to ¥,,.

Does the preceding definition allow S statistical knowledge in typical cases? Let us ex-
amine a canonical example. Suppose we have independent and identically distributed
observations (X7, .., X,,) and that X; ~ N (u, 1) where y is unknown. We are interested in
testing the null hypothesis u = 0 against the alternative u # 0. The standard a-level test
U, rejects the null when |zZ| > \/Lﬁza /2 where z, is the a-quantile of the standard normal
distribution. Figure 1 plots the power function of this test at sample size 10 and 100 for
a = .05.

Now suppose S believes the alternative hypothesis because her test rejected at this
significance level. Do the tracking conditions grant S knowledge of the alternative hy-
pothesis? In fact, they do not. S satisfies sensitivity, since she has a 5% chance of falsely
believing that p # 0. But she spectacularly fails the adherence condition, since her test
has almost no power at parameters near 0. The situation is even worse, because S would
fail the current adherence condition in the limit — no matter how much data S saw, there
would be a parameter sufficiently close to zero against which she had no power. By a

simple continuity argument:
lim inf B(p, ¥,) = «

n—o0o uEB;
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The best we can say for S is that the power of her test converges pointwise to 1:
inf lim SB(p, V,) =1

HEO] n—oo

But this is not sufficient to make her adherent to p # 0. If S fails to reject, the situation
is dual with respect to knowledge of the null. Since S has a 95% chance of believing p = 0
if it is true, she satisfies adherence. But since there are parameters arbitrarily close to 0
at which she has very little power, she fails sensitivity.

Perhaps we have stated the tracking conditions too strongly. Nozick does not insist that
we satisfy the tracking conditions at all possible worlds, only at the worlds nearby to ours.
Recourse to a similarity relation over worlds might yield the required conditions. In this
case, we are faced with only unpalatable options. It is precisely those parameters that are
near the 0-world that cause trouble; the standard test has plenty of power against far-off
parameters. To say that the nearby worlds are the worlds in which our test is already
adherent (or sensitive) seems ad-hoc: it is to say that if the mean weren’t zero we would
have noticed it already, even at small sample sizes. This would make much of the practice
in frequentist statistics look inexplicable: why should we be wary of inferences from small
sample sizes, if even at small n our tests are already effective in the counterfactual situ-
ations that we think are plausible? The argument from back-tracking conditionals given
by Nozick (1981) and Roush (2005) looks reasonable in the case of massive violations of
natural laws, but looks wildly ad hoc in the statistical setting. The tracking conditions
are simply too strong to give an account of how statistical testing yields knowledge.

TRACKING IN THE LIMIT

It is hard to believe that statistical tests do not yield knowledge. They are, after all,
a workhorse methodology for working scientists. If we think there is something right
about the tracking analysis of knowledge, we have to liberalize the tracking conditions
to make sense of statistical and scientific practice. Kelly (2013) writes that inductive
learning is a matter of believing the truth now and eliminating error in other possible
worlds eventually. We might reverse his lexicography and say that statistical knowledge
is a matter of minimizing Type I errors now and eliminating Type II errors eventually.
Say that S is weakly asymptotically B-adherent to ©, according to the sequence of tests
(.} if

(1) For all n, S believes O if ¥, (X™) = 1;

(2) jnf lim 5(6, .) = 5.
Say that S'is weakly asymptotically adherent to ©4 if S is weakly asymptotically S-adherent
for 8 = 1. The natural thing to say is that S knows that ©; according to test ¥,, and the
sample z" if

(1)

(2)

(3) S is .05-sensitive to ©; at sample size n according to W,;

(4) S is weakly asymptotically adherent to ©; according to {V,,}.
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S believes O1; if ©; were false, S would probably not believe it; and in all ©; worlds, S
is committed to a testing regime that guarantees she will believe ©; eventually. The fact
that S has rejected the null already is a bit of epistemic luck, but her disposition is such
that she would have eventually rejected the null no matter how ©; were true.

This analysis looks plausible. It demands sensitivity at finite samples, but only point-
wise asymptotic adherence. This lexicographic preference is consistent both with Nozick’s
emphasis on the sensitivity condition and the standard Neyman-Pearson practice of priv-
ileging Type I over Type II errors. Unfortunately, it cannot be correct. Suppose S were
determined to reject the null hypothesis = 0 in the canonical problem we examined
previously. At each n she computes the sample mean, and rejects only if |z| > \an /2
where « is fixed at .05. If she fails to reject, she continues to sample, making sure to
appropriately adjust her test to achieve .05 significance on the larger sample. When she
sees a sufficiently extremal statistic, she halts the experimental procedure and publishes
a significant result. This is an example of “sampling to a foregone conclusion” a classical
bugbear in statistical inference. The problem with such a procedure is that with prob-
ability one, S will reject the null at some sample size, even if it is true. At all sample
sizes S is .05 sensitive to ©;. Furthermore, she is asymptotically adherent, since her test
is powering up on all © € ©; as n increases. But S cannot know ©;. The reason that S
does not know ©; — even if she correctly rejects — is that her testing regime is not actually
sensitive to ©1. Even though at all sample sizes she uses a test that is sensitive at the
5% level, she is guaranteed to believe ©; eventually, even if it is false. S is synchronically
sensitive, but diachronically insensitive. It is not enough to be .05-sensitive at all sample
sizes. To have knowledge one needs to be increasingly sensitive as the sample sizes grow
larger. Say that S is strongly asymptotically a-sensitive to ©1 according to the sequence
of tests {U, } if
(1) For all n, S believes @0 if U,(X"™) =0;

(2) hm supﬂ(@ v,) =
96@0

Say that S is strongly asymptotically sensitive to ©; if S is asymptotically a-sensitive
for « = 0. Note that this definition preserves the lexicographic order, since we demand
uniform convergence of sensitivity (significance) and only pointwise convergence of the
adherence (power). Now we say that S knows that ©; according to test ¥, and the
sample z" if

(1) Wp(z") = L

(2) 6 € Oy;

(3) S is at least .05-sensitive to ©1 at sample size n according to U,,;
(4) S is weakly asymptotically adherent to ©; according to {V,,};

(5) S is strongly asymptotically sensitive to ©; according to {V¥,}.

S believes ©1 right now; if ©; were false, S would probably not now believe it; in all ©;
worlds, S is committed to a testing regime that guarantees she will believe ©1 eventually;
and in all ®¢ worlds, S is committed to a testing regime that guarantees she will believe
B¢ eventually. There is now no way to cheat the knowledge definition by sampling to a
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foregone conclusion — the way to salvage the tracking analysis is to go fully asymptotic.
Knowledge is a matter of controlling the probability of Type I errors now, and being
disposed to eliminate Type I and II errors in the limit. A slogan for this view might be
“sensitivity now, adherence in the limit.” Such a testing regime exists for the toy inference
problem we have been considering. Whether such a regime exists for a given inference
problem is an interesting question in asymptotic testing theory.

TRACKING THE NULL

The preceding knowledge analysis would never allow knowledge of ©, because the third
and fourth condition could never be satisfied. No matter how much data S sees, she can
never be more than (1 — «)-sensitive to ©y. Obviously, if & — 0 then S gets only less
sensitive as she continues her regime of testing. Furthermore, S cannot be asymptotically
sensitive, since we have required uniform convergence of sensitivity and S can at best be
pointwise sensitive to Oq in the limit. Nevertheless, we might want to say that knowledge
of the null is possible. Mayo (1996) argues that hypotheses that pass increasingly severe
tests are more confirmed. It is to be hoped that confirmation has something to do with
knowledge. How would we have to alter the tracking conditions to get knowledge of the
null? Say that S is weakly asymptotically sensitive to ©y according to the sequence of

tests {0, } if

(1) For all n, S believes O if U, (X™) = 1;

(2) jnf N (s, W) =1
and that S is strongly asymptotically adherent to ©qy according to the sequence of tests
{W,} if

(1) For all n, S believes O if ¥, (X™) = 0;

(2) lim inf 5(6,¥,) = 1.

n—oo €0

Now we might say that S knows that ©, according to test ¥,, and the sample 2" if

(1) U, (™) = 0;

(2) 0 € Oy;

(3) S is at least .95-adherent to O, at sample size n according to ¥,;
(4) S is strongly asymptotically adherent to ©¢ according to {¥,};
(5) S is weakly asymptotically sensitive to ¢ according to {¥,,}.

As is to be expected, the epistemic situation with respect to the null is dual to that that of
the alternative. Such an analysis would allow knowledge of the null, but only by dropping
the synchronic sensitivity requirement entirely and significantly weakening asymptotic
sensitivity. A slogan for this view is “adherence mow, sensitivity in the limit.” Doing so
yields a lot of lucky knowledge. It is easy to be .95-adherent; it is simply a matter of
picking the right test. If we allowed the previous analysis to stand, knowledge would be
a matter of believing a true null hypothesis and resolving to test it appropriately. This
doesn’t seem right, but it may be the price of a lot of scientific knowledge.
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TRACKING CONFIDENCE INTERVALS

Confidence interval procedures are another methodology at the heart of frequentist statis-
tics. It is natural to ask whether there is some tracking account on which these procedures
generate knowledge. As before let

P={P:0c06 CR}

be a family of probability measures having densitites p(z,6). Suppose that we have
independent and identically distributed observations (X, ..., X,,) distributed according to
P. A confidence interval with coverage 1 — « is a random interval

Co(X™) = [L(X™"),U(X")] C©

such that
inf (0 € Cp,(X")) > 1—«
0cO

Since this interval is just a set of worlds, we can think of C,,(X™) as a random proposition.
A good confidence interval procedure generates random propositions that are probably
true. That is, if we had a procedure with 95% coverage and repeated it many times on
independent data sets of the same size, we would only fail to trap the true parameter 5%
of the time.

E =
8
-
E =
6
[ M
L g 1
C -
e

FIGURE 2. The confidence interval traps # with probability 1 — a.

Suppose S believes the proposition C,,(z") that results from a confidence interval proce-
dure on a particular sample x™. Sensitivity asks us to evaluate the probability that S
would not believe C,,(2") if it were false, i.e.
L dut B G £ Cyla™)

The trouble is that this quantity is always low, whether C,, (™) is true or false. So long
as P is a continuous family, the probability that S believes any particular proposition is
low, since a small change in the sample could yield a slightly different interval. So in this
sense, S is only trivially sensitive to C,(z"). Clearly, S cannot be adherent to C,(z")
either. What we can say is that if C),(2") is true, then S very probably won’t believe its
negation © \ C,(z")', since she will believe some proposition that overlaps C,(z") at the

n what follows we write this proposition as =Cp(2™).
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true parameter:
sup By (Cr,(X")NC,(2") = 2) < a.

0eChp(z™)
This is a straightforward consequence of the confidence property. Since C,(z") is true,
0 € C,(2") and therefore it is probable that 6 would also be in any other confidence
interval S would construct with her procedure. So if C,(2") were true, S would not
rule it out with high probability. This is a kind of adherence property. Furthermore, if
Cy(z™) were false, there is no guarantee that S would believe =C,,(z™), since the true
parameter could be just outside of C,,(z™) and any confidence interval constructed there
would probably overlap with C,,(z™). By a simple continuity argument:

inf Py (C,(X")NC,(2") =9)) <a.

pedtf  Fo (Cu(XT) N C(a") = @) < @
So if C,,(z™) were false, we have no guarantee that S would rule it out. The best we can
say is that if C,(2™) were false, S would probably not rule out =C,,(z"):

sup By (Cr(X")NO\Ch(z") =2) <a.

0¢Cn(am)

The trouble is that if C,,(z™) were true, there are parameters at which S would probably
not rule out —C,,(z") either. What we can say is that if C,(z") is false, then S would
be able to rule it out eventually — the shrinking confidence intervals around the true
parameter would eventually probably separate S from C,,(x™):

inf  lim P (C,,(X™)NCph(z") =2) =1

ey S P (CalX™) 0 Cola”) = )

So only the “adherence now, sensitivity in the limit” theory underwrites knowledge of
confidence intervals. As with knowledge of the null, insisting on sensitivity at finite
samples makes knowledge of confidence intervals impossible.

SAFETY AND STATISTICS

Tracking can only recover statistical knowledge by going asymptotic. Can the safety
theorist do any better? The situation for hypothesis testing looks reasonably good. Say
that S’s belief in O, is a-safe at sample size n according to ¥,, if

If Py(,(X") =1) > (1 — ) then 0 € O,.

That is, if S is likely to reject the null (believe the alternative), then the null is false
(alternative is true). Any a-level hypothesis test is safe e.g. if S is likely to reject the
null hypothesis ¢ = 0, then the truth is far away enough from 0 that S’s test already has
high power. Safety deals with this quite elegantly. But safety will have difficulty with
confidence intervals. We have seen that the probability that S believes any particular
interval is always low. We might say that S’s belief in C,,(z") is a-safe if

If Pp(Cr(X™")NC(2™) # @) > (1 — «) then 6 € C,(z").
But then believing C),(z") is not safe! We have seen that if 6 is outside of C,, (™) but close

to its boundary, the resulting confidence interval will probably intersect C,,(z™). What is
true is that, if you are likely to rule out C,,(z™), then it is probably false:

If Pp(Cr(X™)NCy(2™) = @) > (1 — «) then 0 ¢ C,(z").
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This might be an interesting property, but it is not safety. Safety is not able to explain
why we are interested in frequentist confidence intervals.

CONCLUDING REMARKS

If we want to recover most of what we take to be statistical knowledge, it seems we have to
go with an “adherence now, sensitivity in the limit” theory. Insisting otherwise would rule
out confidence intervals as a kind of knowledge and make knowledge of the null hypothesis
— no matter how severely tested — impossible. Can we live with such a view? Admittedly,
it does some violence to our folk semantics. Suppose I am a pessimistic but persistent
player of the lottery. I believe every ticket I buy is a loser. Nevertheless, I check the
winning numbers when they are announced. I am always adherent to the “my ticket is
a loser” hypothesis and I am sensitive in the limit. If my ticket is a winner, I will find
out eventually. If my ticket is a loser, do I know it as soon as I buy the ticket? Perhaps
I do. But it is intuitive to say that I don’t know, because my belief fails sensitivity:
even if my ticket were a winner, I would still believe it was a loser. “Adherence now,
sensitivity in the limit” does not support this intuition. Perhaps I can know my ticket
is not a winner. But suppose now that I am a sunny optimist. I believe every ticket I
buy is a winner. Of course, I check the winning numbers when they are announced and
I am usually disappointed. I am adherent to the “my ticket is a winner” hypothesis, and
sensitive in the limit. But surely when my lucky day arrives I won’t know that my ticket
is a winner! “Adherence now, sensitivity in the limit” does not discriminate between the
pessimist and the optimist. I am not sure what to think about this. Perhaps the epistemic
standards for statistical knowledge are just different than the standards for knowledge of
chancy propositions. After all, the true parameter is not announced at the end of the
week. A more complete theory would systematically shift the epistemic standards with
the shifting context of inquiry.
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