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Abstract
Since Spirtes et al. (2000), it is well known
that if causal relationships are linear and noise
terms are independent and Gaussian, causal ori-
entation is not identified from observational data
— even if causal faithfulness is satisfied. Shimizu
et al. (2006) showed that linear, non-Gaussian
(LiNGAM) causal models are identified from ob-
servational data, so long as no latent confounders
are present. That holds even when faithfulness
fails. Genin and Mayo-Wilson (2020) refine that
identifiability result: not only are causal relation-
ships identified, but causal orientation is statisti-
cally decidable. That means that for every ε > 0,
there is a method that converges in probability to
the correct orientation and, at every sample size,
outputs an incorrect orientation with probability
less than ε. These results naturally raise questions
about what happens in the presence of latent con-
founders. Hoyer et al. (2008) and Salehkaley-
bar et al. (2020) show that, although the causal
model is not uniquely identified, causal orienta-
tion among observed variables is identified in the
presence of latent confounders, so long as faith-
fulness is satisfied. This paper refines these re-
sults. When we allow for the presence of latent
confounders, causal orientation is no longer statis-
tically decidable. Although it is possible to con-
verge in probability to the correct orientation, it
is not possible to do so with finite-sample bounds
on the probability of orientation errors. That is
true even if causal faithfulness is satisfied.

1. Introduction
Spirtes et al. (2000) show that when functional relationships
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between variables are linear and noise terms are independent
and Gaussian, it is possible to converge to the Markov equiv-
alence class of the graph generating the data. Although
some causal information can be recovered, causal orienta-
tion is often not identified: two linear Gaussian models may
differ in causal orientation and nevertheless generate the
exact same distribution over the observed variables. Identifi-
ability fails even when causal faithfulness is satisfied and no
hidden variables are present. For this reason, it was a signifi-
cant advance when (Shimizu et al., 2006) showed that, when
functional relationships between variables are linear and
noise terms are independent and non-Gaussian, the model
could be uniquely identified from observational data, even
without assuming faithfulness. However, that result depends
on the absence of unobserved confounders. Since then, the
LiNGAM framework, as it came to be called, has been ex-
tended to accommodate the presence of hidden variables
(Hoyer et al., 2008; Salehkaleybar et al., 2020). For exam-
ple, Salehkaleybar et al. (2020) prove that if, in addition to
the usual LiNGAM assumptions, we assume causal faithful-
ness, then causal orientation between observed variables is
identified even in the presence of unobserved confounders.

These identifiability results are exciting developments. How-
ever, identifiability is a weak criterion and on its own does
not entail the existence of a consistent discovery algorithm.
Moreover, distinctions ought to be made between consis-
tent algorithms. For example, uniform consistency requires
that one be able to determine a priori the sample size at
which the chance of identifying the true model is at least
1− α. Unfortunately, it is easy to show that there is no uni-
formly consistent algorithm for determining the direction of
a causal edge, even in unconfounded LiNGAMs.1 However,
Genin & Mayo-Wilson (2020) show that the direction of a
causal edge in an unconfounded LiNGAM is statistically
decidable. Statistical decidability is a reliability concept
intermediate between the familiar notions of consistency
and uniform consistency. Causal orientation is statistically
decidable, if for any α > 0, there is a consistent procedure
that, at every sample size, hypothesizes a false orientation
with chance less than α. Such procedures may exist even
when uniformly consistent ones do not.

The existence of statistical decision procedures is by no

1See Example 1 in Genin & Mayo-Wilson (2020).
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means guaranteed by identifiability. For example, (Kelly &
Mayo-Wilson, 2010) show that in the unconfounded linear
Gaussian setting, even in situations in which causal orien-
tation is identifiable, it is possible to force any consistent
procedure to “flip" its judgement about whether X causes
Y or vice versa, no matter how strong the effect of X on
Y . Furthermore, even in the absence of confounders, the
number of such flips is bounded only by the number of vari-
ables in the model. The results of Genin & Mayo-Wilson
(2020) show that such flipping behavior can be avoided in
the unconfounded LiNGAM setting. The main result of this
paper is that flipping returns in the confounded LiNGAM
setting, even when we assume causal faithfulness. Although
consistent procedures exist for learning causal orientation,
consistent decision procedures do not.

Table 1. Causal Orientation in LiNGAM models

Unconfounded Potentially Confounded
Faithful decidable decidable in the limit
Unfaithful decidable not identified

LetM be a set of statistical models. We assume there is a
function P : M 7→ PM that maps each model inM to a
probability measure over a space Ω of observed outcomes,
although we often do not distinguish between a random
vector and the probability measure induced by its distribu-
tion function. Henceforth, we assume Ω = Rp. We lift
P (·) to sets of models in the obvious way: if A ⊆ M,
let P [A] = {P (M) : M ∈ A}. If A ⊆ Rnd, let ∂A
be the boundary of A in the usual topology on Rnd. Let
P := P [M] denote the set of all probability measures as-
sociated with the models inM. The weak topology on P
is defined by letting a sequence of Borel measures Pn con-
verge weakly to P, written Pn ⇒ P iff Pn(A) → P (A),
for every A such that P (∂A) = 0. A collection of random
vectors (Xn) converges in distribution to X iff the prob-
ability measures induced by the Xn converge weakly to
the measure induced by X. We write cl(·) for the closure
operator in the weak topology. We write frA for clA \ A.
We say that a set is locally closed iff it is the intersection
of an open and a closed set. In metrizable topologies such
as the topology of weak convergence, every open set, and
therefore every locally closed set, is a countable union of
closed sets. For any natural number k, let P kM be the k-fold
product measure of PM with itself. This measure describes
the probabilities of events in Rkd when we take k iid sam-
ples from PM . If the measures Pn converge weakly to P,
the product measures P kn also converge weakly to P k (see
Theorem 2.8 in (Billingsley, 1986)).

We define a question Q to be a countable set of disjoint
subsets ofM. The elements of Q are called answers. For
all M ∈ ∪Q, let Q(M) denote the unique answer in Q

containing M. The answer to question Q is identified iff
P (M) 6= P (M ′) whenever Q(M) 6= Q(M ′). Given a
question Q, we define a method λ = 〈λn〉n∈N to be a
sequence of measurable functions λn : Ωn → Q ∪ {M},
where λn maps samples of size n to answers to the question;
a method may also take the value M to indicate that the
data do no fit any particular answer sufficiently well, and
so we callM the uninformative answer. We require that
∂λ−1

n (A) has Lebesgue measure zero for all n and every
answer A in the range of λn.

A method is (pointwise) consistent forQ if for all ε > 0 and
M ∈ ∪Q, there is n such that P kM (λk = Q(M)) > 1 − ε
for all k ≥ n. We say that Q is decidable in the limit
iff there is a consistent method for Q. Dembo & Peres
(1994, Corollary 2) give the following sufficient condition
for limiting decidability.

Theorem 1.1. Q is decidable in the limit if {P (A) : A ∈
Q} is disjoint and each P (A) is a countable union of sets
closed in the weak topology.

Given some α > 0, say that a method λ is an α-decision
procedure for Q if (1) λ is consistent for Q and (2)
PnM (M /∈ λn) ≤ α for all M ∈ ∪Q and all sample sizes
n. In other words: an α-decision procedure outputs a false
hypothesis with probability at most α. A question is sta-
tistically decidable (or simply decidable) if there is an α-
decision procedure for α > 0. We give a simple necessary
condition for statistical decidability.

Theorem 1.2. Q is statistically decidable only if there are
no A,B ∈ Q such that P (A) ∩ cl(P (B)) is not empty and
contains a measure absolutely continuous with Lebesgue
measure on Rp.

Proof of Theorem 1.2. Suppose for a contradiction that
PM ∈ P (A) ∩ cl(P (B)) is absolutely continuous (a.c.)
with Lebesgue measure and λ is an α-decision procedure
for Q. Since λ is consistent for Q, there must be n such that
PnM (λ−1

n (A)) > 1−α. Since ∂λ−1
n (A) has Lebesgue mea-

sure zero and PnM is a.c. with Lebesgue measure on Rnp,
PnM (∂λ−1

n (A)) = 0.2 Therefore, there are (Mi) in B such
that PnMi

(A) → PnM (A). But then there is some Mj ∈ B
such that PnMj

(Mj /∈ λn) > α. Contradiction.

It is worth introducing some intuitive language for ques-
tions Q with only one (usually non-exhaustive) answer
A ⊆ M. We say that A is statistically verifiable iff
Q = {A} is decidable. Say thatA is statistically refutable
iff Q = {M \ A} is decidable. For partial converses of The-
orems 1.1 and 1.2, see Genin & Kelly (2017). Essentially,
the converses hold straightforwardly if all distributions are
assumed absolutely continuous with Lebesgue measure.

2It is a basic fact that if µ << ν then µn << νn.
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2. Background: Linear Causal Models
A linear causal model in d variables M is a triple
〈X, e, A〉, where X = 〈Xi〉 is a vector of d random vari-
ables, e = 〈e1, e2, . . . , ed〉 is a random vector of d exoge-
nous noise terms, and B is a d× d matrix such that

1. Each variableXi is a linear function of variables earlier
in the order, plus an unobserved noise term ei:

Xi(ω) =
∑
j<i

AijXj(ω) + ei(ω);

2. the noise terms e1, . . . , ed are mutually independent.

In matrix notation, we have that X = AX + e. Because no
Xi causes itself,A has only zeroes on its diagonal. By virtue
of the causal order, A is lower triangular, i.e. all elements
above the diagonal are zero. The random vector X also
admits a “dual” representation: X = Be, where B = (I −
A)−1. Since the inverse of a lower triangular matrix is lower
triangular, the matrix B is also lower triangular, however its
diagonal elements are all equal to one. If M = 〈X, e, A〉,
let |M | be equal to the length of the vector X. Moreover, let
X(M), e(M), A(M) andB(M) be X, e, A and (I−A)−1,
respectively. The relationship between A(M) and B(M)
will be made more perspicuous in the following.

Write j →M i as a shorthand for Aij(M) 6= 0. The rela-
tion→M defines a directed acyclic graph G(M) over the
vertices {1, . . . , |M |}. A causal path of length m from i to
j in G(M) is a sequence of vertices π = (v1, . . . , vm) such
that v1 = i, vm = j and vi →M vi+1. Let Πn

ij(M) be the
set of all causal paths of length n from i to j in G(M). Let
Πij(M) be the set of all causal paths from i to j in G(M).
Let Π(M) be the set of all causal paths in G(M). Write
i  M j as a shorthand for Πij(M) 6= ∅. Write j ◦M i
when j 6 M i and j 6  M i. If π = (v1, . . . , vn) is a se-
quence of vertices in {1, . . . , |M |}, let the path product
×M

π be the product of all causal coefficients along the
path π in G(M), i.e.×M

π =
∏n
i=1Avi+1,vi(M). Note

that if π ∈ π(M) iff×M
π 6= 0.

It is easy to verify that

Akij(M) =
∑

π∈Πkji(M)

×Mπ.

In other words, Akij(M) is the sum of all path products
for paths of length k from i to j. So Akij(M) 6= 0
implies j  M i. The converse is not necessarily true,
since non-zero path products may sum to zero. By a
result of Carl Neumann’s, B(M) =

∑|M |
k=0A

k(M). So
Bij(M) =

∑
π∈Πji(M)×M

π. In other words, Bij(M)
is the sum of all path products for paths from i to j. So

Bij(M) 6= 0 implies j  M i. The converse does not nec-
essarily hold since non-zero path products may sum to zero.
We say that model M is faithful if Bij(M) 6= 0 whenever
j  M i.

A linear causal model M is non-Gaussian (a LiNGAM)
if in addition to satisfying (1) and (2), each of the noise
terms is non-Gaussian. Let LINd be the class of all linear
causal models on d variables, and let LNGd, FLNGd respec-
tively denote the classes of non-Gaussian models and faith-
ful non-Gaussian models. Similarly, LIN, LNG and FLNG
respectively represent the classes of all linear causal models,
all linear non-Gaussian models, and all faithful linear non-
Gaussian models over some finite number of variables. It
is sometimes reasonable to introduce a priori constraints on
the maximum size of a coefficient in a LiNGAM model. For
example, if c is the number of particles in the universe, let
FLNGc be the set {M ∈ FLNG : maxi,j |Bij(M)| < c}.
Let FLNGcd be FLNGc ∩ FLNGd.

We introduce some notation for manipulating matri-
ces. Suppose A is a n × p and U, V are subsets of
{1, . . . , n}, {1, . . . , p}, respectively. Let A[U ;V ] be the re-
sult of dropping all rows from A that are not in U and all
columns that are not in V . Let A(U ;V ) be the result of drop-
ping all rows from A that are in U and all columns that are
in V. For singleton sets {i} we drop the braces so that A(i,j)

is the result of dropping columns i and j from A. We retain
the usual notation Aij = A[i,j]. Say that a matrix A has
pairwise linearly independent columns iff no column of
A is proportional to any other.

3. Parsimonious Models
Let O be the set of all probability distributions on Rp. We
are interested in when the same vector of observed random
variables could have arisen from distinct causal models. Ac-
cordingly, say that a random vector O = (O1, . . . , Op) ∈ O
admits a LiNGAM model M ∈ LNGd if there is a per-
mutation α of (1, . . . , d) such that Oi = Xα−1(i)(M) for
1 ≤ i ≤ p. In other words: O = (O1, . . . , Op) admits M if
there is a way to order the d variables of X(M) such that
the first p are identical withO1, . . . , Op.We say that the per-
mutation α embeds O into M. If α embeds O into M, then
O = BO(M)eO(M), where BO(M) is the first p rows of
PαB(M)Pα, eO(M) is Pαe(M) and Pα is the permuta-
tion matrix corresponding to α. Extend the causal order
over the elements of M to the Oi by setting Oi  M Oj if
α−1(i) M α−1(j) and Oi ◦M Oj if α−1(i) ◦M α−1(j).

Say that O admits a LiNGAM model if there is d such
that O admits M ∈ LNGd. We say that a model M ∈
LNGd is parsimonious for O if O admits M and O admits
no M ′ in LNGf with f < d. It is immediate that if O
admits a LiNGAM model, it admits some parsimonious
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LiNGAM model. For A ∈ {LNGd, LNGcd, FLNGd, FLNGcd}
Let OA ⊂ O be the set

{O ∈ O : (∃M ∈ A)M is parsimonious for O}.

For A ∈ {LNG, LNGc, FLNG, FLNGc} Let OA≤d =
∪j≤d OAj and OA≥d = ∪j≥d OAj . Let OA<d ,OA>d be
defined similarly. Finally, let OA = OA≥p .

The following Lemma says that ifM is faithful and parsimo-
nious for O then no column of BO(M) is proportional to
any other. The proof is relatively straightforward, but since
it is rather lengthy we relegate it to the Appendix. A related
result is given by Salehkaleybar et al. (2020, Theorem 11).

Lemma 3.1. Suppose that O admits faithful M ∈ LNGd
and that some column of BO(M) is proportional to another.
Then there is M ′ ∈ LNGd−1 such that (i) O admits M ′ and
(ii) Oi  M Oj iff Oi  M ′ Oj and (iii) M ′ is faithful.

Lemma 3.1 raises a question about the converse: is it also
the case that if BO(M) has no two proportional columns,
then M is parsimonious for O? The following Theorem
from Kagan et al. (1973) allows us to answer the question
in the affirmative.

Theorem 3.1. Suppose that X = Ae = Bf , where A and
B are p × r and p × s matrices and e = (e1, . . . , er),
f = (f1, . . . , fs) are random vectors with independent com-
ponents. Suppose that no two columns ofA are proportional
to each other. If the i-th column of A is not proportional to
any column of B, then ei is normally distributed.

Theorem 3.2. Suppose that faithful M ∈ LNGd. Then, M
is parsimonious for O = (O1, . . . , Op) iff no column of
BO(M) is proportional to any other.

Proof of Theorem 3.2. The left to right implication is im-
mediate from Lemma 3.1. To prove the converse, sup-
pose that M is not parsimonious for O. Then, O ad-
mits some M ′ ∈ LNGf with f < d. Moreover O =
BO(M)eO(M) = BO(M ′)eO(M ′), where BO(M) is an
p×dmatrix andBO(M ′) is a p×f matrix. By Theorem 3.1,
every column of BO(M) is proportional to some column of
BO(M ′). Since the latter has fewer columns, there must be
two distinct columns of BO(M) that are proportional to the
same column and, therefore, to each other.

We close this section with an easy corollary of Lemma 3.1,
which we will appeal to in the following.

Corollary 3.1. Suppose that O admits faithful M ∈ LNG.
Then there is faithful M ′ ∈ LNG such that (i) O admits
M ′ (ii) M ′ is parsimonious for O and (iii) Oi  M Oj iff
Oi  M ′ Oj .

Proof of Corollary 3.1. Suppose O admits faithful M ∈
LNG that is not parsimonious for O. By repeated appeal to

Lemma 3.1, we must eventually arrive at some M ′ that is
parsimonious for O, either because no column of BO(M)
is proportional to any other (see Theorem 3.2), or because
M ′ ∈ LNGp has no latent variables.

4. Causal Identifiability
Genin & Mayo-Wilson (2020, Theorem 2.3) prove that if a
vector of p observed variables admits a model in p variables,
that model is unique.

Theorem 4.1. Suppose that = (O1, . . . , Op) admits
M,M ′ ∈ LNGp, then M = M ′.

Unfortunately, that is no longer the case when latent vari-
ables are present. Of course, if O admits a LiNGAM with-
out latents, it also admits one with latents. That situation is
not too worrisome, so long as the effect of an ideal interven-
tion on X1 would be the same in both circumstances. What
is more worrisome is that the vector of observed variables
O may admit two LiNGAM models that differ on the effects
of interventions (see Figure 5 in Salehkaleybar et al. (2020)).
The good news is that if a set of observed variables admits
two faithful LiNGAM models, the models must agree on
the ancestor relationship between them. Although this is
shown already by Salehkaleybar et al. (2020, Lemma 5), the
following is a simple proof that does not rely on facts about
independent component analysis.

Theorem 4.2. Suppose that O = (O1, . . . , Op) admits
faithful M,M ′. Then Oi  M Oj iff Oi  M ′ Oj

Proof of Theorem 4.2. By Corollary 3.1 there are faithful
LiNGAMs F, F ′ such that 1. O admits F, F ′; 2. Oi  M

Oj iff Oi  F Oj ; 3. Oi  M ′ Oj iff Oi  F ′ Oj and
4. BO(F ) and BO(F ′) both have pairwise linearly inde-
pendent columns. By (1) and (2), it suffices to prove that
Oi  F Oj iff Oi  F ′ Oj . But since the situation is
symmetrical, it suffices to prove that Oi  F Oj only if
Oi  F ′ Oj .

Suppose for a contradiction that Oi  F Oj but Oi 6 F ′

Oj . Let α be a permutation embedding O in F . LetB,C be
BO(F ), BO(F ′), respectively. Let e, f be eO(F ), eO(F ′),
respectively. Then O = Be = Cf . Since Oi 6 F ′ Oj ,
Cji = 0. Moreover, Cii = 1 By faithfulness of F ,
Oi  F Oj implies that Bji 6= 0. By Theorem 3.1, there
must be a column k 6= i and real number a 6= 0 such that
Bik = aCii 6= 0 but Bjk = aCji = 0. Since Bik 6= 0,
it follows that α−1(k)  F α−1(i). Since Oi  F Oj by
assumption, it follows that α−1(i) F α−1(j). By transi-
tivity of F , α

−1(k) F α
−1(j). However, Bjk = 0. So

F is unfaithful. Contradiction.

For A ∈ {LNG, LNGc, LNGcd, FLNG, FLNGc, FLNGcd}, let
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Oi→jA ,Oi jA and Oi◦jA be, respectively,

{O ∈ OA : (∃M ∈ A) O admits M and Oi →M Oj};
{O ∈ OA : (∃M ∈ A) O admits M and Oi  M Oj};
{O ∈ OA : (∃M ∈ A) O admits M and Oi ◦M Oj}.

By Theorem 4.2, Oi jFLNG, O
i  j
FLNG and Oi◦jFLNG are disjoint.

5. The Topology of Latent Confounding
When O = (O1, . . . , Op) admits a LiNGAM model without
latents, Genin & Mayo-Wilson (2020, Theorem 4.1) prove
that orientation hypotheses are topologically well-separated:

Lemma 5.1. Oi→jLNGcp
,Oi←jLNGcp

are open and Oi◦jLNGcp
is closed

in the weak topology on OLNGcp
.

The situation changes when we allow for latent variables.

Lemma 5.2. Oi→jFLNGcp
is not disjoint from cl(Oi←jFLNGcp+2

) in
the weak topology on OFLNGc . Moreover, there are distribu-
tions in the intersection that are absolutely continuous wrt
Lebesgue measure.

Proof of Lemma 5.2. Let p = 2. Let
U1, U2,W1,W2, Z1, Z2 be mutually independent, ab-
solutely continuous (a.c.) random variables. Suppose
that all variables except Z1, Z2 are non-Gaussian.
Let V1 = Z1 + Z2 and let V2 = Z1 − Z2. By the
Lukacs-King theorem, V1, V2 are independent. Let
X = (X1, X2) = (U1 + V1, U1 +U2 + 2Z1). By reference
to the lhs model in Figure 1, it is clear that X ∈ OFLNGc2

.
Moreover, since sums of independent a.c. random variables
are a.c., X1, X2 are a.c. wrt Lebesgue measure on R. Since
products of a.c. measures are absolutely continuous wrt the
product, X is a.c. wrt Lebesgue measure on R2.

For n > 2, let X1,n = U1 + V1 + 1
n (W1 +W2 + U2) and

X2,n = U1 +U2 +2Z1 + 2
nW1. Let Xn = (X1,n, X2,n). It

is clear that the Xn converges in probability, and there-
fore in distribution, to X. It remains to show that the
Xn lie in OFLNGc4

, which we do by reference to the rhs
model in Figure 1. Let J1,n = Z1 + 1

nW1 and J2,n =
Z2 + 1

nW2. Then J1,n, J2,n, U1, U2 are independent and
non-Gaussian. Let eTn = (J2,n, U1, J1,n, U2). Let An =

0 1 −1 −1 + 1
n

0 0 2 1
0 0 0 0
0 0 0 0

 and Bn =


1 1 1 1

n
0 1 2 1
0 0 1 0
0 0 0 1

 . It

is easy to check that Bn = (I − An)−1. Let Mn =
〈Bnen, An, en〉. By inspection ofBn, Mn is faithful. Since
the entries of An are smaller than c, Mn ∈ FLNGc4. Letting
Cn be the first two rows of Bn, it is easy to verify that
(X1,n, X2,n)T = Cnen. By Theorem 3.2, since, for n > 2,
no column of Cn is proportional to any other, Mn is parsi-
monious for Xn. Therefore, Xn ∈ OFLNGc4

.

X1 X2

U1 + V1 U2 + V2

X1,n X2,n

J1,n U2

J2,n U1

1 1

−1 2−1 + 1
n 1

Figure 1. The (X1,n, X2,n), which lie in O1←2
FLNGc4

, converge in
probability to (X1, X2), lying inO1→2

FLNGc2
. Note that although error

terms approach Gaussianity and the model approaches unfaithful-
ness, no term in the sequence is unfaithful and no noise term is
Gaussian. For definitions of variables, see proof of Lemma 5.2.

In the following, we will appeal extensively to the following
Lemma, given by Kagan et al. (1973).

Lemma 5.3. Suppose the k-dimensional random vectors
en have independent components. Consider the sequence
of p-dimensional random vectors Xn = Ben, where B is a
p× k matrix. If the Xn converge in distribution to X, then
X = Be, where e is a k-dimensional random vector with
independent components.

The following is a straightforward Corollary of Lemma 5.3.

Corollary 5.1. Suppose the k-dimensional random vectors
en have independent components. Consider a sequence of
p-dimensional random vectors Xn = Bnen, where the Bn
are p × k matrices and Bn → B. If the Xn converge in
distribution to X, thenX = Be, where e is a k-dimensional
random vector with independent components.

Proof of Corollary 5.1. It is a standard fact that if |Xn −
Yn| converge in probability to 0 and the Xn converge in
distribution to X, then the Yn also converge in distribution
to X. Clearly, |Bnen −Ben| converge in probability to 0.
By assumption, the Bnen converge in distribution to X. It
follows that Ben converge in distribution to X. By Lemma
5.3, X = Be, where e is a k-dimensional random vector
with independent components.

Theorem 5.1. For d ≥ p, OFLNGc>d
is open in the weak

topology on OFLNGc .

Proof of Theorem 5.1. Let e ≤ d < f Suppose for a con-
tradiction that the On ∈ FLNGce converge in distribu-
tion to O ∈ FLNGcf . Let M ∈ FLNGcf be parsimonious
for O and Mn ∈ FLNGce be parsimonious for On. Let
Bn = BOn(Mn) and A = BO(M). Let en = eOn(Mn)
and e = eO(M). While B is a p × f matrix, each of the
Bn are p×e matrices. By the Bolzano-Weierstrass theorem,
since the Bn are uniformly bounded, there is a p× e matrix
B and a convergent subsequence Bnm → B. By assump-
tion, Bnmenm converge in distribution to O. By Corollary
5.1, O = Bf where f is a vector of independent compo-
nents. Therefore O = Ae = Bf . By 3.1 every column of
A must be proportional to some column of B. Since A has
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strictly more columns than B, two columns of A must be
proportional to the same column ofB and, therefore, to each
other. But then, by Theorem 3.2, M is not parsimonious for
O. Contradiction.

We have shown that for every O ∈ FLNGcf , there is an
open set separating O from FLNGce. Since e < f was taken
to be arbitrary, there is such an open set Eg separating O
from each FLNGcg with p ≤ g < f. Since there are only
finitely many of the Eg, the intersection of the Eg is open
and separates O from OFLNGc≤d

. That shows that for every
O ∈ OFLNGc>d

, there is an open set EO separating O from
OFLNGc≤d

. Therefore, OFLNGc>d
= ∪O∈OFLNGc

>d
EO is a union

of open sets and, therefore, open in OFLNGc .

As a special case of Lemma 5.1 it entails that OFLNGc>p
is

open. By Genin & Kelly (2017, Theorem 4.1), this means
that it is statistically verifiable whether an unobserved con-
founder must be introduced in order to accommodate the
distribution of O, at least when all distribution are assumed
to be absolutely continuous wrt Lebesgue measure. As ex-
pected, the hypothesis of un-confoundedness is statistically
testable. On the other hand, the precise hypothesis FLNGcd
is neither statistically verifiable nor refutable, even under
the assumption that the distribution O was generated by
some model in FLNGc. To see this, note that for d > p,
FLNGcd is neither open nor closed, since more parsimonious
models can approximate simpler models. Therefore it is
properly locally closed. Although it is neither verifiable
nor decidable, it is decidable in the limit by Theorem 1.1.3

We shall see that the same is true for the hypothesis of ori-
entation Oi jFLNGc . The following theorem shows that if we
knew exactly how many latent variables were necessary to
accommodate the observed distribution, the hypothesis of
orientation would be topologically well-separated.

Theorem 5.2. For d ≥ p, Oi jFLNGcd
,Oi  jFLNGcd

are open and

Oi◦jFLNGcd
is closed in the weak topology on OFLNGcd

.

Proof of Theorem 5.2. Suppose for a contradiction that the
On ∈ Oi 6 jFLNGcd

converge in distribution to O ∈ Oi jFLNGcd
. Let

M ∈ FLNGcd be parsimonious for O and Mn ∈ FLNGcd
be parsimonious for On. Let Bn = BOn

(Mn) and A =
BO(M). Let en = eOn

(Mn) and e = eO(M). By the
Bolzano-Weierstrass theorem, since the Bn are uniformly
bounded, there is a p × e matrix B and a convergent
subsequence Bnm → B. By assumption, Bnmenm con-
verge in distribution to O. By Corollary 5.1, O = Bf
where f is a vector of independent components. Therefore
O = Ae = Bf . Since (Bn)ji = 0 for all n, Bji = 0.
Moreover, Bii = 1. Since A and B have equal dimensions,
by Theorem 3.1 there must be a column k such thatAjk = 0

3Recall that, in metrizable spaces such as the weak topology,
every locally closed set is a countable union of closed sets.

and Aik 6= 0. But then Ok  M Oi and Oi  M Oj and,
therefore, Ok  M Oj . But since Ajk = 0, M must be
unfaithful. Contradiction. We have shown that Oi jFLNGcd

is
open in the weak topology on OFLNGcd

. Since the situation
is symmetrical, Oi  jFLNGcd

is also open. Since Oi◦jFLNGcd
is the

complement ofOi jFLNGcd
∪Oi  jFLNGcd

, it is closed inOFLNGcd
.

Corollary 5.2. Oi jFLNGc , O
i  j
FLNGc ,O

i◦j
FLNGc are disjoint count-

able unions of sets closed in OFLNGc .

Proof of Corollary 5.2. In general if A is open/closed in a
subspace, it is the intersection of an open/closed set with
the subspace. By Theorem 5.1, OFLNGcd

is locally closed
in OFLNGc . By Theorem 5.2, Oi jFLNGcd

, Oi  jFLNGcd
,Oi◦jFLNGcd

are either open or closed in OFLNGcd
. Therefore, Oi jFLNGcd

,

Oi  jFLNGcd
,Oi◦jFLNGcd

are locally closed inOFLNGc . It follows that

each of Oi jFLNGc , O
i  j
FLNGc ,O

i◦j
FLNGc is a countable union of lo-

cally closed sets. In a metrizable space such as the weak
topology, each open set, and therefore each locally closed
set, is a countable union of closed sets. Therefore, each of
Oi jFLNGc , O

i  j
FLNGc ,O

i◦j
FLNGc is a countable union of closed sets.

They are disjoint by Theorem 4.2.

6. Main Result and Discussion
We are almost in position to state and prove the main
results. Let M be the set of all pairs 〈M,α〉, where
M ∈ FLNGc and α is a permutation of {1, . . . , |M |}.
Let P (〈M,α〉) = (Xα−1(1)(M), . . . ,Xα−1(p)(M)). Let
Mi j = {〈M,α〉 ∈ M : α−1(i)  M α−1(j)} and
Mi◦j = {〈M,α〉 ∈ M : α−1(i) ◦M α−1(j)}.

Theorem 6.1. The question Q = {Mi j ,Mi◦j ,Mi  j}
is identified and decidable in the limit, but not statistically
decidable.

Proof of Theorem 6.1. It is immediate from defintions
that P (Mi j) = Oi jFLNGc , P (Mi  j) = Oi  jFLNGc and
P (Mi◦j) = Oi◦jFLNGc . SinceOi jFLNGc ,O

i  j
FLNGc ,O

i◦j
FLNGc are dis-

joint by Theorem 4.2, the question is identified. Since they
are each countable unions of closed sets (by Corollary 5.2),
Theorem 1.1 implies that the question is decidable in the
limit. The question is not decidable by Theorem 1.2 and
Lemma 5.2.

Theorem 6.1 shows that learning causal orientation in faith-
ful, but potentially confounded, LiNGAM models is a dif-
ficult problem. Not so difficult that it is impossible to con-
struct consistent methods, but difficult enough that no con-
sistent method can guarantee a finite-sample bound on the
probability of orientation errors.
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A. Appendix
Proof of Lemma 3.1. Suppose that α embeds O =
(O1, . . . , Op) in M ∈ LNGd and that D = BO(M). Sup-
pose that D[,v] = aD[,u]. First, we show that at least one
of u, v must be strictly greater than p. Suppose for a contra-
diction that u, v ≤ p. Since D has ones everywhere on the
diagonal of the principal p×p submatrix, Duu = Dvv = 1.
By assumption, we have that Duv = a > 0 and Dvu =
1/a > 0. But then Ou  M Ov and Ov  M Ou, which
contradicts acyclicity. Therefore, without loss of generality,
we suppose that v > p.

Let y, z = α−1(u), α−1(v). Let A = A(M) and B =
B(M). Let β be the permutation of {1, ..., d} sending i 7→ i
for i < z and i 7→ i− 1 for i > z. Define the d− 1× d− 1
matrix A′ in the following way:

A′ij = Aβ−1(i,j) +Az,β−1(j)Aβ−1(i),z.

Since A has zeros on the diagonal and, by acyclicity, one
of Az,β−1(i), Aβ−1(i),z must be zero, A′ has zeros on the
diagonal. We show that A′ is lower triangular, i.e. that
A′ij = 0 whenever j > i. There are three cases to consider:
(1) i < z, j < z; (2) i < z, j ≥ z and (3) i ≥ z, j ≥ z.
In the first case A′ij = Aij + AzjAiz. Since A is lower
triangular, Aij = Aiz = 0. In the second case, A′ij =
Ai,j+1 +Az,j+1Aiz. Since A is lower triangular, Ai,j+1 =
Aiz = 0. In the final case,A′ij = Ai+1,j+1+Az,j+1Ai+1,z.
Since A is lower triangular, Ai+1,j+1 = Az,j+1 = 0.

Since I −A′ is lower triangular and its diagonal entries are
all equal to one, the inverse matrix B′ = (I −A′)−1 exists.
We argue that B′ij = Bβ−1(i,j). Let Πij be the set of all
paths from i to j over the vertices {1, . . . , d}. Let Πikj be
the set of all paths from i to j over the vertices {1, . . . , d}
passing through k and let Πi6kj = Πij \Πikj . Let Π′ij bet the
set of all paths from i to j over the vertices {1, . . . , d− 1}.
From our previous observation, we have that

B′ji =
∑
π∈Π′ij

|π|∏
i=1

A′πi+1,πi

=
∑
π∈Π′ij

|π|∏
i=1

(
Aβ−1(πi+1,πi) +Az,β−1(πi)Aβ−1(πi+1),z

)

=
∑

π∈Πβ−1(i)6zβ−1(j)

|π|∏
i=1

(
Aπi+1,πi +Az,πiAπi+1,z

)
.

Note that for any π ∈ Πij there can be at most one πi such
that

Az,πiAπi+1,z 6= 0.

If this were not the case, there would be causal paths in
G(M) passing through z twice, contradicting acyclicity.
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Let πi∗ be the unique such πi, if it exists, and let πi∗ = π1,
otherwise. For notational brevity, let

Π 6z = Πβ−1(i) 6zβ−1(j);

Πz = Πβ−1(i)zβ−1(j).

Then B′ji =

∑
π∈Π6z

|π|∏
i=1

(Aπi+1,πi) +Az,πi∗Aπi∗+1,z

∏
i 6=i∗

(Aπi+1,πi) =

∑
π∈Π6z

|π|∏
i=1

(Aπi+1,πi) +
∑
π∈Πz

|π|∏
i=1

(Aπi+1,πi) =

∑
π∈Π6z

×Mπ +
∑
π∈Πz

×Mπ =

∑
π∈Πβ−1(i,j)

×Mπ =

Bβ−1(j,i).

Let the d− 1 element column vector e′ be just like the first
d− 1 rows of Pβe(M) except e′β(y) = ey + aez. Since the
sum of independent non-Gaussian variables is non-Gaussian,
each element of e′ is not Gaussian. Moreover, since func-
tions of independent random variables are independent, the
e′i are mutually independent.

Let X′ = B′e′ Since B′ is lower triangular with ones on
the diagonal and e′ is a vector of mutually independent, non-
Gaussian random variables, we have that M ′ = 〈X′, e′, A′〉
is in LNGd−1.

We are now in a position to prove part (i) of the theo-
rem. We claim that β−1 ◦ α embeds O into M ′. In other
words, we claim that Oi = Xβ(α−1(i))(M

′). We have that
Xβ(α−1(i))(M

′) =

=

d−1∑
j=1

B′β(α−1(i)),je
′
j

= B′β(α−1(i)),β(y)e
′
β(y) +

∑
j<z,j 6=β(y)

B′β(α−1(i)),je
′
j +

∑
j≥z,j 6=β(y)

B′β(α−1(i)),je
′
j

= Bα−1(i),y(ey + aez) +
∑

j<z,j 6=β(y)

Bα−1(i),β−1(j)e
′
j +

∑
j≥z,j 6=β(y)

Bα−1(i),β−1(j)e
′
j

= Bα−1(i),y(ey + aez) +
∑

j<z,j 6=y

Bα−1(i),jej +
∑

j≥z,j 6=y

Bα−1(i),j+1ej+1

= Bα−1(i),y(ey + aez) +
∑

j<z,j 6=y

Bα−1(i),jej +
∑

j>z,j 6=y

Bα−1(i),jej

= aBα−1(i),yez +
∑
j 6=z

Bα−1(i),jej

= Xα−1(i)(M)

= Oi.

The third and fourth equalities follows from the fact
that B′ij = Bβ−1(i,j) and that β−1(i) = i when
i < z and β−1(i) = i + 1 when i ≥ z.
The penultimate equality follows from the fact that
aBα−1(i),yez = aBα−1(i),α−i(u)ez = aDi,uez =
Di,vez = Bα−1(i),α−i(v)ez = Bα−1(i),zez. The final
equality follows from the fact that α embeds O in M.

We now prove (ii). Suppose that Oi  M Oj . Since M
is faithful, Bα−1(j,i) 6= 0 and therefore B′β(α−1(j,i)) 6= 0.

That entails that β(α−1(i))  M ′ β(α−1(j)) and, since
β−1 ◦ α embeds O in M ′, Oi  M ′ Oj . For the converse it
suffices to show that i→M ′ j entails β−1(i) M β−1(j).
Suppose the antecedent holds. Then A′ji 6= 0. Therefore,
either Aβ−1(j,i) 6= 0 or Az,β−1(i)Aβ−1(j),z 6= 0. In either
case, β−1(i) M β−1(j).

It remains to prove (iii). Suppose that i  M ′ j. Then, by
(ii), β−1(i) β−1(j). Since M is faithful, Bβ−1(j,i) 6= 0.
But since Bβ−1(j,i) = B′j,i, B

′
j,i 6= 0, as required.


